Recently, introducing a transition predicting model into the Reynolds averaged Navier-Stokes (RANS) environment has been paid more and more attention. Langtry proposed a correlation-based transition model in 2006, w...Recently, introducing a transition predicting model into the Reynolds averaged Navier-Stokes (RANS) environment has been paid more and more attention. Langtry proposed a correlation-based transition model in 2006, which was built strictly on local variables. However, two core correlations in the model had not been published until 2009. In this paper, after considerable analyses and discussions of the mechanism of this transition model and a series of numerical validations in the skin friction coefficient of flat plate boundary layers, a new correlation based on free-stream turbulence intensity is developed, and the empirical correlation of the transition onset momentum thickness Reynold number aiming at the hypersonic transition is improved. Low-speed/transonic airfoils and a hypersonic double wedge fiat are tested to prove the reliability and practicability of this correlation.展开更多
The properties of absorption spectra are presented and the linear correlations of Hammett constants with the 0-0 transition energy(E_(o,o))of S_←S_o, and the ratios of oscillator strength(f/f)are used to probe the in...The properties of absorption spectra are presented and the linear correlations of Hammett constants with the 0-0 transition energy(E_(o,o))of S_←S_o, and the ratios of oscillator strength(f/f)are used to probe the interactions betwee π-electron of aromatic maerocycles or metal ion of complexes with the sub- stituents on β-position of benzene ring for porphyrin-like maerocyclic compounds.展开更多
We report the observed photon bunching statistics of biexciton cascade emission at zero time delay in single quantum dots by second-order correlation function g(2) (T) measurements under continuous wave excitation...We report the observed photon bunching statistics of biexciton cascade emission at zero time delay in single quantum dots by second-order correlation function g(2) (T) measurements under continuous wave excitation. It is found that the bunching phenomenon is independent of the biexciton binding energy when it varies from 0.59 meV to nearly zero. The photon bunching takes place when the exeiton photon is not spectrally distinguishable from the biexciton photon, and either of them can trigger the %tart' in a Hanbury-Brown and Twiss setup. However, if the exciton energy is spectrally distinguishable from the biexciton, the photon statistics will become asymmetric and a cross-bunching lineshape can be obtained. The theoretical calculations based on a model of three-level rate-equation analysis are consistent with the result of g(2)(τ) correlation function measurements.展开更多
To investigate the convective heat transfer of nanofluids, experiments were performed using silver-water nanofluids under laminar, transition and turbulent flow regimes in a horizontal 4.3 mm inner-diameter tube-in-tu...To investigate the convective heat transfer of nanofluids, experiments were performed using silver-water nanofluids under laminar, transition and turbulent flow regimes in a horizontal 4.3 mm inner-diameter tube-in-tube counter-current heat transfer test section. The volume concentration of the nanoparticles varied from 0.3% to 0.9% in steps of 0.3%, and the effects of thermo-physical properties, inlet temperature, volume concentration, and mass flow rate on heat transfer coefficient were investigated. Experiments showed that the suspended nanoparticles remarkably increased the convective heat transfer coefficient, by as much as 28.7% and 69.3% for 0.3% and 0.9% of silver content, respectively. Based on the experimental results a correlation was developed to predict the Nusselt number of the silver-water nanofluid, with +10% agreement between experiments and prediction.展开更多
文摘Recently, introducing a transition predicting model into the Reynolds averaged Navier-Stokes (RANS) environment has been paid more and more attention. Langtry proposed a correlation-based transition model in 2006, which was built strictly on local variables. However, two core correlations in the model had not been published until 2009. In this paper, after considerable analyses and discussions of the mechanism of this transition model and a series of numerical validations in the skin friction coefficient of flat plate boundary layers, a new correlation based on free-stream turbulence intensity is developed, and the empirical correlation of the transition onset momentum thickness Reynold number aiming at the hypersonic transition is improved. Low-speed/transonic airfoils and a hypersonic double wedge fiat are tested to prove the reliability and practicability of this correlation.
文摘The properties of absorption spectra are presented and the linear correlations of Hammett constants with the 0-0 transition energy(E_(o,o))of S_←S_o, and the ratios of oscillator strength(f/f)are used to probe the interactions betwee π-electron of aromatic maerocycles or metal ion of complexes with the sub- stituents on β-position of benzene ring for porphyrin-like maerocyclic compounds.
基金Supported by the National Key Basic Research Program of China under Grant No 2013CB922304the National Natural Science Foundation of China under Grant Nos 11474275 and 11464034
文摘We report the observed photon bunching statistics of biexciton cascade emission at zero time delay in single quantum dots by second-order correlation function g(2) (T) measurements under continuous wave excitation. It is found that the bunching phenomenon is independent of the biexciton binding energy when it varies from 0.59 meV to nearly zero. The photon bunching takes place when the exeiton photon is not spectrally distinguishable from the biexciton photon, and either of them can trigger the %tart' in a Hanbury-Brown and Twiss setup. However, if the exciton energy is spectrally distinguishable from the biexciton, the photon statistics will become asymmetric and a cross-bunching lineshape can be obtained. The theoretical calculations based on a model of three-level rate-equation analysis are consistent with the result of g(2)(τ) correlation function measurements.
基金King Mongkut’s University of Technology Thonburi, the Thailand Research Fund, the Office of the Higher Education Commissionthe National Research University Project
文摘To investigate the convective heat transfer of nanofluids, experiments were performed using silver-water nanofluids under laminar, transition and turbulent flow regimes in a horizontal 4.3 mm inner-diameter tube-in-tube counter-current heat transfer test section. The volume concentration of the nanoparticles varied from 0.3% to 0.9% in steps of 0.3%, and the effects of thermo-physical properties, inlet temperature, volume concentration, and mass flow rate on heat transfer coefficient were investigated. Experiments showed that the suspended nanoparticles remarkably increased the convective heat transfer coefficient, by as much as 28.7% and 69.3% for 0.3% and 0.9% of silver content, respectively. Based on the experimental results a correlation was developed to predict the Nusselt number of the silver-water nanofluid, with +10% agreement between experiments and prediction.