期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A New Filter Collaborative State Transition Algorithm for Two-Objective Dynamic Reactive Power Optimization 被引量:4
1
作者 Hongli Zhang Cong Wang Wenhui Fan 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2019年第1期30-43,共14页
Dynamic Reactive Power Optimization(DRPO) is a large-scale, multi-period, and strongly coupled nonlinear mixed-integer programming problem that is difficult to solve directly. First, to handle discrete variables and s... Dynamic Reactive Power Optimization(DRPO) is a large-scale, multi-period, and strongly coupled nonlinear mixed-integer programming problem that is difficult to solve directly. First, to handle discrete variables and switching operation constraints, DRPO is formulated as a nonlinear constrained two-objective optimization problem in this paper. The first objective is to minimize the real power loss and the Total Voltage Deviations(TVDs), and the second objective is to minimize incremental system loss. Then a Filter Collaborative State Transition Algorithm(FCSTA) is presented for solving DRPO problems. Two populations corresponding to two different objectives are employed. Moreover, the filter technique is utilized to deal with constraints. Finally, the effectiveness of the proposed method is demonstrated through the results obtained for a 24-hour test on Ward & Hale 6 bus, IEEE 14 bus, and IEEE 30 bus test power systems. To substantiate the effectiveness of the proposed algorithms, the obtained results are compared with different approaches in the literature. 展开更多
关键词 dynamic reactive power optimization filter collaborative state transition algorithm Ward & Hale 6 bus IEEE 14 bus IEEE 30 bus
原文传递
Poly(N-isopropylacrylamide)-grafted Dual Stimuli-responsive Filter Paper for Protein Separation 被引量:1
2
作者 Qi-jia-yu Wu Rui Wang +3 位作者 Ying Zhou Ya-qin Huang Raja Ghosh 陈晓农 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2015年第7期1048-1057,共10页
Thermal and salt dual stimuli-responsive filter-paper-based membranes were prepared by UV-induced grafting of NIPAM-based polymers on paper surface. The grafting ratio could be controlled by monomer concentration duri... Thermal and salt dual stimuli-responsive filter-paper-based membranes were prepared by UV-induced grafting of NIPAM-based polymers on paper surface. The grafting ratio could be controlled by monomer concentration during grafting polymerization. The results from pressure drop measurement of the mobile phase flowed cross the membrane demonstrate that an appropriate grafting ratio would be 8%-10%. Protein adsorption on the membrane through hydrophobic interaction could be promoted by increasing temperature and lyotropic salt concentration. The effect of grafted polymer structure on protein binding performance was studied. Filter paper grafted with NIPAM-based branched copolymer consisting of hydrophobic monomer moieties shows ten times higher protein binding capacity than that of the original filter paper. The separation of plasma proteins using the dual stimuli-responsive membrane was examined to demonstrate feasible application for hydrophobic interaction chromatographic separation of proteins. 展开更多
关键词 N-isopropyl acrylamide Filter paper Surface grafting Stimuli-responsive hydrophobic transition Protein separation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部