Whether the South China continental margin had shifted from active subduction to passive extension in the Late Cretaceous remains controversial.Located in the northernmost of the South China Sea continental margin,San...Whether the South China continental margin had shifted from active subduction to passive extension in the Late Cretaceous remains controversial.Located in the northernmost of the South China Sea continental margin,Sanshui Basin developed continuous stratigraphy from Lower Cretaceous to Eocene and provides precious outcrops to study the regional tectonic evolution during the Cretaceous.Therefore,we conducted field observations,petrology,clay mineralogy,geochemistry,and detrital zircon chronology analyses of sedimentary rocks from the Upper Cretaceous Sanshui Formation in Sanshui Basin.Results suggest that the Sanshui Basin is characterized as an intermoutane basin with multiple provenances,strong hydrodynamic environment,and proximal accumulation in the Late Cretaceous.An angular unconformity at the boundary between the Lower and Upper Cretaceous was observed in the basin.The sedimentary facies of the northern basin changed from lacustrine sedimentary environment in the Early Cretaceous to alluvial facies in the Late Cretaceous.The zircon U-Pb ages of granitic gravelly sandstone from Sanshui Formation prominently range from 100 Ma to 300 Ma,which is close to the deposition age of Sanshui Formation.The major and trace elements of the Late Cretaceous sedimentary samples show characteristics of active continental margin,and are different from the Paleogene rifting sequences.Hence,we propose that the northern South China Sea margin underwent an intense tectonic uplift at the turn of the Early and Late Cretaceous(around 100 Ma).Afterward,the northern South China Sea margin entered a wide extension stage in the Late Cretaceous(~100 to~80 Ma).This extensional phase is related to the back-arc extension in the active continental margin environment,which is different from the later passive rifting in the Cenozoic.The transition from active subduction to passive extension in the northern South China Sea may occur between the late Late Cretaceous and the Paleogene.展开更多
End-Permian Gondwana siliciclastics (50 - 70 m) of the Um Irna F exposed along the NE Dead Sea, exhibit carbonate-free fining upward cycles (FUC) deposited during acid flash flood events under tropical climate. Severa...End-Permian Gondwana siliciclastics (50 - 70 m) of the Um Irna F exposed along the NE Dead Sea, exhibit carbonate-free fining upward cycles (FUC) deposited during acid flash flood events under tropical climate. Several ferruginous paleosol intercalations cover periods of drying upward formation (DUP) under semiarid/arid climates. Thin grey pelite beds interbedded between paleosol and overlying FUC, are interpreted as tephra deposits sourced in Siberian LIP- and Neo-Tethys (NT)-Degassing. The Wadi Bassat en Nimra-section exhibits the P-T transitional zone where flash flood deposits meet supra-/intertidal sediments of the southward-directed transgressive NT. Decreasing flash-flooding continued through the Lower Scythian (Ma’in F.) during transgression, reworking, and resedimentation. Two euryhaline foraminifera-bearing limestone beds are discussed as indicators for the end of mass extinction (recovery phase: ca. 250.8 - 250.4 Ma) possibly correlating with the Maximum Flooding Surface MFS Tr 10 (ca. 250.5 Ma) on the Arabian Shelf (Khuff cycles B;A). Comparable data from the Germanic Basin as FUC/DUP-cycles, tephrasuspicious “Grey Beds” with high concentrations of As, Co, Pb, Zn, and Cu as well as the U-Pb Age data of the Siberian LIP meet the PTB-Zone between the MFSs Intervals P 40 (ca. 254 Ma)/Tr 10 (ca 250.5 Ma) on the Arabian Shelf. MFS (Tr 10, 20, 30) and SBs resp. on the Arabian Plate, as well as Scythian Substage boundaries correlate with ∂<sup>13</sup> C-excursions recorded at Musandam, UAE. Thereby, the ratio of greenhouse gases (+climate forcing)/aerosols und tephra (-climate forcing) takes a significant influence on the ∂<sup>13</sup>C-Variation.展开更多
This paper presents a robust kinematic model that describes northern Red Sea and Gulf of Suez rifting and the development of marginal extensional half-graben sub-basins (ESB). A combination of Landsat Enhanced Themati...This paper presents a robust kinematic model that describes northern Red Sea and Gulf of Suez rifting and the development of marginal extensional half-graben sub-basins (ESB). A combination of Landsat Enhanced Thematic Mapper Plus (ETM+) and structural data was used to provide model constraints on the development of rift segments and ESB in the active rift zones. Structural analysis shows rotation and change in strike of rift-bounding faults. The model describes the northern Red Sea region as a poly-phase rift system initiated by late Oligocene (30 - 24 Ma) orthogonal rifting and the development of marginal ESB (now inland ESB), followed by oblique rifting and flank uplift during the early Miocene (24 - 18 Ma). The oblique rifting fragmented the rift depression into segments separated by oblique-slip accommodation within reactivated Pan-African (ca. 600 Ma) fracture zones, resulting in the development of antithetic faults and an en-echelon distribution of inland ESB. The current phase of rifting was instigated by the development of the Dead Sea Transform in response to increased northeasterly extension during the middle Miocene (ca. 18 Ma). The model explains the widening of the Red Sea rift during the last phase more than the Gulf of Suez rift by developing more antithetic faults and formation of offshore ESB, and deepening the rift depression.展开更多
The Yuguang basin is a half-graben basin in the basin-range tectonic zone in northwest Beijing,located at the northern end of the Shanxi graben system,and the Yuguang basin southern marginal fault( YBSMF) controls the...The Yuguang basin is a half-graben basin in the basin-range tectonic zone in northwest Beijing,located at the northern end of the Shanxi graben system,and the Yuguang basin southern marginal fault( YBSMF) controls the formation of this basin. A linear fault escarpment has formed in the proluvial fan on the piedmont fault zone of the Tangshankou segment of YBSMF. A trench across this escarpment reveals three paleo-earthquake events on two active faults. One fault ruptured at about 9 ka for the first time,and then faulted again at about 7. 3 ka,causing the formation and synchronous activity of another fault.Finally,they faulted for the third time,but we cannot determine the faulting time due to the lack of relevant surface deposition. The accumulative vertical displacement of these three events is about 8. 1 m. We estimate that the average recurrence period of the piedmont fault is about 1. 7 ka,and the average slip rate of the piedmont fault is about1. 6 mm/a. We also estimate the reference magnitude of each event according to the empirical formula.展开更多
Based on analysis of newly collected 3D seismic and drilled well data,the geological structure and fault system of Baodao sag have been systematically examined to figure out characteristics of the transition fault ter...Based on analysis of newly collected 3D seismic and drilled well data,the geological structure and fault system of Baodao sag have been systematically examined to figure out characteristics of the transition fault terrace belt and its control on the formation of natural gas reservoirs.The research results show that the Baodao sag has the northern fault terrace belt,central depression belt and southern slope belt developed,among them,the northern fault terrace belt consists of multiple transition fault terrace belts such as Baodao B,A and C from west to east which control the source rocks,traps,reservoirs,oil and gas migration and hydrocarbon enrichment in the Baodao sag.The activity of the main fault of the transition belt in the sedimentary period of Yacheng Formation in the Early Oligocene controlled the hydrocarbon generation kitchen and hydrocarbon generation potential.From west to east,getting closer to the provenance,the transition belt increased in activity strength,thickness of source rock and scale of delta,and had multiple hydrocarbon generation depressions developed.The main fault had local compression under the background of tension and torsion,giving rise to composite traps under the background of large nose structure,and the Baodao A and Baodao C traps to the east are larger than Baodao B trap.Multiple fault terraces controlled the material source input from the uplift area to form large delta sand bodies,and the synthetic transition belt of the west and middle sections and the gentle slope of the east section of the F12 fault in the Baodao A transition belt controlled the input of two major material sources,giving rise to a number of delta lobes in the west and east branches.The large structural ridge formed under the control of the main fault close to the hydrocarbon generation center allows efficient migration and accumulation of oil and gas.The combination mode and active time of the main faults matched well with the natural gas charging period,resulting in the hydrocarbon gas enrichment.Baodao A transition belt is adjacent to Baodao 27,25 and 21 lows,where large braided river delta deposits supplied by Shenhu uplift provenance develop,and it is characterized by large structural ridges allowing high efficient hydrocarbon accumulation,parallel combination of main faults and early cessation of faulting activity,so it is a favorable area for hydrocarbon gas accumulation.Thick high-quality gas reservoirs have been revealed through drilling,leading to the discovery of the first large-scale gas field in Baodo 21-1 of Baodao sag.This discovery also confirms that the north transition zone of Songnan-Baodao sag has good reservoir forming conditions,and the transition fault terrace belt has great exploration potential eastward.展开更多
The southwestern part of the Sichuan Basin(SW-SCB)is adjacent to the eastern Himalayan syntaxis.Affected by the Indo-Eurasian collision and subsequent intrusion of the Indian plate into the Eurasian plate during the C...The southwestern part of the Sichuan Basin(SW-SCB)is adjacent to the eastern Himalayan syntaxis.Affected by the Indo-Eurasian collision and subsequent intrusion of the Indian plate into the Eurasian plate during the Cenozoic,this region is ideal for the study of the tectonic evolution of the intracontinental lithosphere and the dynamic processes of deep and shallow structures.In this study,we applied the receiver function technique to the data obtained from a recently deployed high-density broadband seismic array across the Sichuan Basin and Sichuan-Yunnan block(SCB-SYB).We conducted a multi-frequency and multi-model correction analysis to image the structure of the mantle transition zone beneath this region.The results showed the660-km discontinuity gradually increasing in depth by 10-30 km beneath the western side of the Anninghe-Xiaojiang Fault,suggesting the presence of thermal anomalies caused by the subducted Indian plate from west to east.At the junction of the SCBSYB,the 410-km discontinuity exhibited a slight uplift of 5-10 km,while the 660-km discontinuity showed a significant depression of~30 km over a lateral range of~150 km.Based on previous surface GPS observation and dynamic numerical simulation studies,we suggest that the sharp lateral small-scale topography of this 660-km discontinuity beneath the SW-SCB may have resulted from dripping delamination of the lithosphere within the strain localization area.Furthermore,the aggregation of delaminated lithospheric material at the base of the 660-km discontinuity determines the regional topography of mantle transition zone discontinuities.In this study,we provided seismological evidence for the challenging detection of small-scale intracontinental lithosphere dripping delamination.Moreover,it provides a new view for studying deep and shallow dynamic processes in intracontinental regions with stress concentration resulting from plate/continental subduction and collision.展开更多
Geological conditions and main controlling factors of gas accumulation in subsalt Ma 4 Member of Ordovician Majiagou Formation are examined based on large amounts of drilling,logging and seismic data.The new understan...Geological conditions and main controlling factors of gas accumulation in subsalt Ma 4 Member of Ordovician Majiagou Formation are examined based on large amounts of drilling,logging and seismic data.The new understandings on the control of paleo-uplift over facies,reservoirs and accumulations are reached:(1)During the sedimentary period of Majiagou Formation,the central paleo-uplift divided the North China Sea in central-eastern of the basin from the Qinqi Sea at southwest margin of the basin,and controlled the deposition of the thick hummocky grain beach facies dolomite on platform margin of Ma 4 Member.Under the influence of the evolution of the central paleo-uplift,the frame of two uplifts alternate with two sags was formed in the central-eastern part of the basin,dolomite of inner-platform beach facies developed in the underwater low-uplift zones,and marl developed in the low-lying areas between uplifts.(2)From the central paleo-uplift to the east margin of the basin,the dolomite in the Ma 4 Member gradually becomes thinner and turns into limestone.The lateral sealing of the limestone sedimentary facies transition zone gives rise to a large dolomite lithological trap.(3)During the late Caledonian,the basin was uplifted as a whole,and the central paleo-uplift was exposed and denuded to various degrees;high-quality Upper Paleozoic Carboniferous-Permian coal measures source rocks deposited on the paleo-uplift in an area of 60000 km^(2),providing large-scale hydrocarbon for the dolomite lithological traps in the underlying Ma 4 Member.(4)During the Indosinian-Yanshanian stage,the basin tilted westwards,and central paleo-uplift depressed into an efficient hydrocarbon supply window.The gas from the Upper Paleozoic source rock migrated through the high porosity and permeability dolomite in the central paleo-uplift to and accumulated in the updip high part;meanwhile,the subsalt marine source rock supplied gas through the Caledonian faults and micro-fractures as a significant supplementary.Under the guidance of the above new understandings,two favorable exploration areas in the Ma 4 Member in the central-eastern basin were sorted out.Two risk exploration wells were deployed,both revealed thick gas-bearing layer in Ma 4 Member,and one of them tapped high production gas flow.The study has brought a historic breakthrough in the gas exploration of subsalt Ma 4 Member of Ordovician,and opened up a new frontier of gas exploration in the Ordos Basin.展开更多
The traveling time of the reflection waves of each shot point from the crust-mantle transitional zone has been obtained by data processing using wavelet transform to the waves reflected from the crust-mantle transitio...The traveling time of the reflection waves of each shot point from the crust-mantle transitional zone has been obtained by data processing using wavelet transform to the waves reflected from the crust-mantle transitional zone. The crust-mantle transitional zone of the Xayar-Burjing geoscience transect can be divided into three sections: the northern margin of the Tarim Basin, the Tianshan orogenic belt and Junggar Basin. The crust-mantle transitional zone is composed mainly of first-order discontinuity in the Tarim Basin and the Junggar Basin, but in the Tianshan orogenic belt, it is composed of 7–8 thin layers which are 2-3 km in thickness and high and low alternatively in velocity, with a total thickness of about 20km. The discovery of the crust-mantle transitional zone of the Tianshan orogenic belt and Junggar Basin and their differences in tectonic features provide evidence for the creation of the geodynamic model “lithospheric subduction with intrusion layers in crust” for the Tianshan orogenic belt.展开更多
基金Supported by the Guangdong Special Support Talent Team Program(No.2019BT02H594)the National Natural Science Foundation of China(Nos.41502100,U2244221)。
文摘Whether the South China continental margin had shifted from active subduction to passive extension in the Late Cretaceous remains controversial.Located in the northernmost of the South China Sea continental margin,Sanshui Basin developed continuous stratigraphy from Lower Cretaceous to Eocene and provides precious outcrops to study the regional tectonic evolution during the Cretaceous.Therefore,we conducted field observations,petrology,clay mineralogy,geochemistry,and detrital zircon chronology analyses of sedimentary rocks from the Upper Cretaceous Sanshui Formation in Sanshui Basin.Results suggest that the Sanshui Basin is characterized as an intermoutane basin with multiple provenances,strong hydrodynamic environment,and proximal accumulation in the Late Cretaceous.An angular unconformity at the boundary between the Lower and Upper Cretaceous was observed in the basin.The sedimentary facies of the northern basin changed from lacustrine sedimentary environment in the Early Cretaceous to alluvial facies in the Late Cretaceous.The zircon U-Pb ages of granitic gravelly sandstone from Sanshui Formation prominently range from 100 Ma to 300 Ma,which is close to the deposition age of Sanshui Formation.The major and trace elements of the Late Cretaceous sedimentary samples show characteristics of active continental margin,and are different from the Paleogene rifting sequences.Hence,we propose that the northern South China Sea margin underwent an intense tectonic uplift at the turn of the Early and Late Cretaceous(around 100 Ma).Afterward,the northern South China Sea margin entered a wide extension stage in the Late Cretaceous(~100 to~80 Ma).This extensional phase is related to the back-arc extension in the active continental margin environment,which is different from the later passive rifting in the Cenozoic.The transition from active subduction to passive extension in the northern South China Sea may occur between the late Late Cretaceous and the Paleogene.
文摘End-Permian Gondwana siliciclastics (50 - 70 m) of the Um Irna F exposed along the NE Dead Sea, exhibit carbonate-free fining upward cycles (FUC) deposited during acid flash flood events under tropical climate. Several ferruginous paleosol intercalations cover periods of drying upward formation (DUP) under semiarid/arid climates. Thin grey pelite beds interbedded between paleosol and overlying FUC, are interpreted as tephra deposits sourced in Siberian LIP- and Neo-Tethys (NT)-Degassing. The Wadi Bassat en Nimra-section exhibits the P-T transitional zone where flash flood deposits meet supra-/intertidal sediments of the southward-directed transgressive NT. Decreasing flash-flooding continued through the Lower Scythian (Ma’in F.) during transgression, reworking, and resedimentation. Two euryhaline foraminifera-bearing limestone beds are discussed as indicators for the end of mass extinction (recovery phase: ca. 250.8 - 250.4 Ma) possibly correlating with the Maximum Flooding Surface MFS Tr 10 (ca. 250.5 Ma) on the Arabian Shelf (Khuff cycles B;A). Comparable data from the Germanic Basin as FUC/DUP-cycles, tephrasuspicious “Grey Beds” with high concentrations of As, Co, Pb, Zn, and Cu as well as the U-Pb Age data of the Siberian LIP meet the PTB-Zone between the MFSs Intervals P 40 (ca. 254 Ma)/Tr 10 (ca 250.5 Ma) on the Arabian Shelf. MFS (Tr 10, 20, 30) and SBs resp. on the Arabian Plate, as well as Scythian Substage boundaries correlate with ∂<sup>13</sup> C-excursions recorded at Musandam, UAE. Thereby, the ratio of greenhouse gases (+climate forcing)/aerosols und tephra (-climate forcing) takes a significant influence on the ∂<sup>13</sup>C-Variation.
文摘This paper presents a robust kinematic model that describes northern Red Sea and Gulf of Suez rifting and the development of marginal extensional half-graben sub-basins (ESB). A combination of Landsat Enhanced Thematic Mapper Plus (ETM+) and structural data was used to provide model constraints on the development of rift segments and ESB in the active rift zones. Structural analysis shows rotation and change in strike of rift-bounding faults. The model describes the northern Red Sea region as a poly-phase rift system initiated by late Oligocene (30 - 24 Ma) orthogonal rifting and the development of marginal ESB (now inland ESB), followed by oblique rifting and flank uplift during the early Miocene (24 - 18 Ma). The oblique rifting fragmented the rift depression into segments separated by oblique-slip accommodation within reactivated Pan-African (ca. 600 Ma) fracture zones, resulting in the development of antithetic faults and an en-echelon distribution of inland ESB. The current phase of rifting was instigated by the development of the Dead Sea Transform in response to increased northeasterly extension during the middle Miocene (ca. 18 Ma). The model explains the widening of the Red Sea rift during the last phase more than the Gulf of Suez rift by developing more antithetic faults and formation of offshore ESB, and deepening the rift depression.
基金funded by the Special Fund for Basic Scientific Research of Institute of Earthquake Science,China Earthquake Administration(2015 IES010202)the Seismic Risk Assessment Project for Active Faults in Key Region of Earthquake Monitoring and Prevention in China(201210916)
文摘The Yuguang basin is a half-graben basin in the basin-range tectonic zone in northwest Beijing,located at the northern end of the Shanxi graben system,and the Yuguang basin southern marginal fault( YBSMF) controls the formation of this basin. A linear fault escarpment has formed in the proluvial fan on the piedmont fault zone of the Tangshankou segment of YBSMF. A trench across this escarpment reveals three paleo-earthquake events on two active faults. One fault ruptured at about 9 ka for the first time,and then faulted again at about 7. 3 ka,causing the formation and synchronous activity of another fault.Finally,they faulted for the third time,but we cannot determine the faulting time due to the lack of relevant surface deposition. The accumulative vertical displacement of these three events is about 8. 1 m. We estimate that the average recurrence period of the piedmont fault is about 1. 7 ka,and the average slip rate of the piedmont fault is about1. 6 mm/a. We also estimate the reference magnitude of each event according to the empirical formula.
基金Supported by the CNOOC Science and Technology Project(KJZH-2021-0003-00,CNOOC-KJ 135 ZDXM 38 ZJ 03 ZJ).
文摘Based on analysis of newly collected 3D seismic and drilled well data,the geological structure and fault system of Baodao sag have been systematically examined to figure out characteristics of the transition fault terrace belt and its control on the formation of natural gas reservoirs.The research results show that the Baodao sag has the northern fault terrace belt,central depression belt and southern slope belt developed,among them,the northern fault terrace belt consists of multiple transition fault terrace belts such as Baodao B,A and C from west to east which control the source rocks,traps,reservoirs,oil and gas migration and hydrocarbon enrichment in the Baodao sag.The activity of the main fault of the transition belt in the sedimentary period of Yacheng Formation in the Early Oligocene controlled the hydrocarbon generation kitchen and hydrocarbon generation potential.From west to east,getting closer to the provenance,the transition belt increased in activity strength,thickness of source rock and scale of delta,and had multiple hydrocarbon generation depressions developed.The main fault had local compression under the background of tension and torsion,giving rise to composite traps under the background of large nose structure,and the Baodao A and Baodao C traps to the east are larger than Baodao B trap.Multiple fault terraces controlled the material source input from the uplift area to form large delta sand bodies,and the synthetic transition belt of the west and middle sections and the gentle slope of the east section of the F12 fault in the Baodao A transition belt controlled the input of two major material sources,giving rise to a number of delta lobes in the west and east branches.The large structural ridge formed under the control of the main fault close to the hydrocarbon generation center allows efficient migration and accumulation of oil and gas.The combination mode and active time of the main faults matched well with the natural gas charging period,resulting in the hydrocarbon gas enrichment.Baodao A transition belt is adjacent to Baodao 27,25 and 21 lows,where large braided river delta deposits supplied by Shenhu uplift provenance develop,and it is characterized by large structural ridges allowing high efficient hydrocarbon accumulation,parallel combination of main faults and early cessation of faulting activity,so it is a favorable area for hydrocarbon gas accumulation.Thick high-quality gas reservoirs have been revealed through drilling,leading to the discovery of the first large-scale gas field in Baodo 21-1 of Baodao sag.This discovery also confirms that the north transition zone of Songnan-Baodao sag has good reservoir forming conditions,and the transition fault terrace belt has great exploration potential eastward.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC1500302)the National Natural Science Foundation of China(Grant No.42074063)the Key Research Program of the Institute of Geology and Geophysics,Chinese Academy of Sciences(Grant No.IGGCAS-201904)。
文摘The southwestern part of the Sichuan Basin(SW-SCB)is adjacent to the eastern Himalayan syntaxis.Affected by the Indo-Eurasian collision and subsequent intrusion of the Indian plate into the Eurasian plate during the Cenozoic,this region is ideal for the study of the tectonic evolution of the intracontinental lithosphere and the dynamic processes of deep and shallow structures.In this study,we applied the receiver function technique to the data obtained from a recently deployed high-density broadband seismic array across the Sichuan Basin and Sichuan-Yunnan block(SCB-SYB).We conducted a multi-frequency and multi-model correction analysis to image the structure of the mantle transition zone beneath this region.The results showed the660-km discontinuity gradually increasing in depth by 10-30 km beneath the western side of the Anninghe-Xiaojiang Fault,suggesting the presence of thermal anomalies caused by the subducted Indian plate from west to east.At the junction of the SCBSYB,the 410-km discontinuity exhibited a slight uplift of 5-10 km,while the 660-km discontinuity showed a significant depression of~30 km over a lateral range of~150 km.Based on previous surface GPS observation and dynamic numerical simulation studies,we suggest that the sharp lateral small-scale topography of this 660-km discontinuity beneath the SW-SCB may have resulted from dripping delamination of the lithosphere within the strain localization area.Furthermore,the aggregation of delaminated lithospheric material at the base of the 660-km discontinuity determines the regional topography of mantle transition zone discontinuities.In this study,we provided seismological evidence for the challenging detection of small-scale intracontinental lithosphere dripping delamination.Moreover,it provides a new view for studying deep and shallow dynamic processes in intracontinental regions with stress concentration resulting from plate/continental subduction and collision.
基金Supported by the Scientific Research and Technology Development Project of PetroChina。
文摘Geological conditions and main controlling factors of gas accumulation in subsalt Ma 4 Member of Ordovician Majiagou Formation are examined based on large amounts of drilling,logging and seismic data.The new understandings on the control of paleo-uplift over facies,reservoirs and accumulations are reached:(1)During the sedimentary period of Majiagou Formation,the central paleo-uplift divided the North China Sea in central-eastern of the basin from the Qinqi Sea at southwest margin of the basin,and controlled the deposition of the thick hummocky grain beach facies dolomite on platform margin of Ma 4 Member.Under the influence of the evolution of the central paleo-uplift,the frame of two uplifts alternate with two sags was formed in the central-eastern part of the basin,dolomite of inner-platform beach facies developed in the underwater low-uplift zones,and marl developed in the low-lying areas between uplifts.(2)From the central paleo-uplift to the east margin of the basin,the dolomite in the Ma 4 Member gradually becomes thinner and turns into limestone.The lateral sealing of the limestone sedimentary facies transition zone gives rise to a large dolomite lithological trap.(3)During the late Caledonian,the basin was uplifted as a whole,and the central paleo-uplift was exposed and denuded to various degrees;high-quality Upper Paleozoic Carboniferous-Permian coal measures source rocks deposited on the paleo-uplift in an area of 60000 km^(2),providing large-scale hydrocarbon for the dolomite lithological traps in the underlying Ma 4 Member.(4)During the Indosinian-Yanshanian stage,the basin tilted westwards,and central paleo-uplift depressed into an efficient hydrocarbon supply window.The gas from the Upper Paleozoic source rock migrated through the high porosity and permeability dolomite in the central paleo-uplift to and accumulated in the updip high part;meanwhile,the subsalt marine source rock supplied gas through the Caledonian faults and micro-fractures as a significant supplementary.Under the guidance of the above new understandings,two favorable exploration areas in the Ma 4 Member in the central-eastern basin were sorted out.Two risk exploration wells were deployed,both revealed thick gas-bearing layer in Ma 4 Member,and one of them tapped high production gas flow.The study has brought a historic breakthrough in the gas exploration of subsalt Ma 4 Member of Ordovician,and opened up a new frontier of gas exploration in the Ordos Basin.
基金the National Research Project 305 (95-04-09-01-02) and National Research Project 973 (G1999043301).
文摘The traveling time of the reflection waves of each shot point from the crust-mantle transitional zone has been obtained by data processing using wavelet transform to the waves reflected from the crust-mantle transitional zone. The crust-mantle transitional zone of the Xayar-Burjing geoscience transect can be divided into three sections: the northern margin of the Tarim Basin, the Tianshan orogenic belt and Junggar Basin. The crust-mantle transitional zone is composed mainly of first-order discontinuity in the Tarim Basin and the Junggar Basin, but in the Tianshan orogenic belt, it is composed of 7–8 thin layers which are 2-3 km in thickness and high and low alternatively in velocity, with a total thickness of about 20km. The discovery of the crust-mantle transitional zone of the Tianshan orogenic belt and Junggar Basin and their differences in tectonic features provide evidence for the creation of the geodynamic model “lithospheric subduction with intrusion layers in crust” for the Tianshan orogenic belt.