In view of the difficulty in predicting the cost data of power transmission and transformation projects at present,a method based on Pearson correlation coefficient-improved particle swarm optimization(IPSO)-extreme l...In view of the difficulty in predicting the cost data of power transmission and transformation projects at present,a method based on Pearson correlation coefficient-improved particle swarm optimization(IPSO)-extreme learning machine(ELM)is proposed.In this paper,the Pearson correlation coefficient is used to screen out the main influencing factors as the input-independent variables of the ELM algorithm and IPSO based on a ladder-structure coding method is used to optimize the number of hidden-layer nodes,input weights and bias values of the ELM.Therefore,the prediction model for the cost data of power transmission and transformation projects based on the Pearson correlation coefficient-IPSO-ELM algorithm is constructed.Through the analysis of calculation examples,it is proved that the prediction accuracy of the proposed method is higher than that of other algorithms,which verifies the effectiveness of the model.展开更多
The single sideband (SSB) modulation is assessed as a means to mitigate the dispersion-induced power fading on the distribution of ortogonal frequency division multiplexing (OFDM) ultra wideband (UWB) radio sign...The single sideband (SSB) modulation is assessed as a means to mitigate the dispersion-induced power fading on the distribution of ortogonal frequency division multiplexing (OFDM) ultra wideband (UWB) radio signals along long-reach passive optical networks (LR-PONs). Particularly, two different SSB ar- chitectures, namely, Sieben's architecture and four phase modulator (FPM) architecture are optimized to provide maximum sideband suppression. The minimum optical signal-to-noise ratio (OSNR) required to simultaneously distribute all the 14 OFDM-UWB sub-bands along the LR-PON distances ranging between 80 and 100 km is also evaluated through numerical simulation. FPM architecture is preferable over Sieben's architecture because the latter SSB architecture generates carriers-carriers beat term at the photodetector output with high power, thereby causing significant degradation in the OFDM-UWB sub-bands with lower central frequencies. The simultaneous distribution of the 14 SSB OFDM-UWB sub-bands in the LR-PON using the FPM architecture shows a minimum OSNR penalty of 3 dB compared with the centralized dis- persion compensation technique.展开更多
文摘In view of the difficulty in predicting the cost data of power transmission and transformation projects at present,a method based on Pearson correlation coefficient-improved particle swarm optimization(IPSO)-extreme learning machine(ELM)is proposed.In this paper,the Pearson correlation coefficient is used to screen out the main influencing factors as the input-independent variables of the ELM algorithm and IPSO based on a ladder-structure coding method is used to optimize the number of hidden-layer nodes,input weights and bias values of the ELM.Therefore,the prediction model for the cost data of power transmission and transformation projects based on the Pearson correlation coefficient-IPSO-ELM algorithm is constructed.Through the analysis of calculation examples,it is proved that the prediction accuracy of the proposed method is higher than that of other algorithms,which verifies the effectiveness of the model.
基金supported by Fundacao para a Cienciae a Tecnologia from Portugal under contract SFRH/BD/29871/2006 the project TURBO-PTDC/EEA-TEL/104358/2008supported in part by the European FIVER-FP7-ICT-2009-4-249142 project
文摘The single sideband (SSB) modulation is assessed as a means to mitigate the dispersion-induced power fading on the distribution of ortogonal frequency division multiplexing (OFDM) ultra wideband (UWB) radio signals along long-reach passive optical networks (LR-PONs). Particularly, two different SSB ar- chitectures, namely, Sieben's architecture and four phase modulator (FPM) architecture are optimized to provide maximum sideband suppression. The minimum optical signal-to-noise ratio (OSNR) required to simultaneously distribute all the 14 OFDM-UWB sub-bands along the LR-PON distances ranging between 80 and 100 km is also evaluated through numerical simulation. FPM architecture is preferable over Sieben's architecture because the latter SSB architecture generates carriers-carriers beat term at the photodetector output with high power, thereby causing significant degradation in the OFDM-UWB sub-bands with lower central frequencies. The simultaneous distribution of the 14 SSB OFDM-UWB sub-bands in the LR-PON using the FPM architecture shows a minimum OSNR penalty of 3 dB compared with the centralized dis- persion compensation technique.