In order to develop the photodetector for effective blue-green response, the 18-mm-diameter vacuum image tube combined with the transmission-mode Alo.7Gao.3Aso.9Po.1/GaAso.9Po.1 photocathode grown by molecular beam ep...In order to develop the photodetector for effective blue-green response, the 18-mm-diameter vacuum image tube combined with the transmission-mode Alo.7Gao.3Aso.9Po.1/GaAso.9Po.1 photocathode grown by molecular beam epitaxy is tentatively fabricated. A comparison of photoelectric property, spectral characteristic and performance parameter be- tween the transmission-mode GaAsP-based and blue-extended GaAs-based photocathodes shows that the GaAsP-based photocathode possesses better absorption and higher quantum efficiency in the blue-green waveband, combined with a larger surface electron escape probability. Especially, the quantum efficiency at 532 nm for the GaAsP-based photocathode achieves as high as 59%, nearly twice that for the blue-extended GaAs-based one, which would be more conducive to the underwater range-gated imaging based on laser illumination. Moreover, the simulation results show that the favorable blue-green response can be achieved by optimizing the emission-layer thickness in a range of 0.4 μm-0.6 μm.展开更多
Two types of transmission-mode GaAs photocathodes grown by molecular beam epitaxy are compared in terms of activation process and spectral response, one has a gradient-doping structure and the other has a uniform-dopi...Two types of transmission-mode GaAs photocathodes grown by molecular beam epitaxy are compared in terms of activation process and spectral response, one has a gradient-doping structure and the other has a uniform-doping structure. The experimental results show that the gradient-doping photocathode can obtain a higher photoemission capability than the uniform-doping one. As a result of the downward graded band-bending structure, the cathode performance parameters, such as the electron average diffusion length and the surface electron escape probability obtained by fitting quantum yield curves, are greater for the gradient-doping photocathode. The electron diffusion length is within a range of from 2.0 to 5.4μm for doping concentration varying from 10^19 to 10^18 cm^-3 and the electron average diffusion length of the gradient-doping photocathode achieves 3.2 μm.展开更多
A transmission-mode GaAs photocathode includes four layers of glass, Si3N4, Gal-xAlxAs and GaAs. A gradientdoping photocathode sample was obtained by molecular beam epitaxy and its transmittance was measured by spectr...A transmission-mode GaAs photocathode includes four layers of glass, Si3N4, Gal-xAlxAs and GaAs. A gradientdoping photocathode sample was obtained by molecular beam epitaxy and its transmittance was measured by spectrophotometer from 600 nm to 1100 nm. The theoretical transmittance is derived and simulated based on the matrix formula for thin film optics. The simulation results indicate the influence of the transition layers and the three thin-film layers except glass on the transmittance spectra. In addition, a fitting coefficient needed for error modification enters into the fitted formula. The fitting results show that the relative error in the full spectrum reduces from 19.51% to 4.35% after the formula is modified. The coefficient and the thicknesses are gained corresponding to the minimum relative error, meanwhile each layer and total thin-film thickness deviation in the module can be controlled within 73. The presence of glass layer roughness, layer interface effects and surface oxides is interpreted on the modification.展开更多
We study the photoemission process of graded-doping CaN photocathode and find that the built-in electric fields can increase the escape probability and the effective diffusion length of photo-generated electrons, whic...We study the photoemission process of graded-doping CaN photocathode and find that the built-in electric fields can increase the escape probability and the effective diffusion length of photo-generated electrons, which results in the enhancement of quantum efficiency. The intervalley scattering mechanism and the lattice scattering mechanism in high electric fields are also investigated. To prevent negative differential mobility from appearing, the surface doping concentration needs to be optimized, and it is calculated to be 3.19×10^17 cm-3. The graded-doping GaN photocathode with higher performance can be realized by further optimizing the doping profile.展开更多
GaN samples 1-3 are cleaned by a 2:2:1 solution of sulfuric acid(98%) to hydrogen peroxide(30%) to de-ionized water;hydrochloric acid(37%);or a 4:1 solution of sulfuric acid(98%) to hydrogen peroxide(30%)...GaN samples 1-3 are cleaned by a 2:2:1 solution of sulfuric acid(98%) to hydrogen peroxide(30%) to de-ionized water;hydrochloric acid(37%);or a 4:1 solution of sulfuric acid(98%) to hydrogen peroxide(30%).The samples are activated by Cs/O after the same annealing process.X-ray photoelectron spectroscopy after the different ways of wet chemical cleaning shows:sample 1 has the largest proportion of Ga,N,and O among the three samples,while its C content is the lowest.After activation the quantum efficiency curves show sample 1 has the best photocathode performance.We think the wet chemical cleaning method is a process which will mainly remove C contamination.展开更多
从变掺杂负电子亲和势(NEA)Ga N光电阴极材料的光电发射机理入手,给出了反射式变掺杂NEA Ga N光电阴极内建电场和量子效率的计算公式.利用初步设计的变掺杂NEA Ga N光电阴极,介绍了变掺杂NEA Ga N阴极的激活过程和激活光电流的变化特点...从变掺杂负电子亲和势(NEA)Ga N光电阴极材料的光电发射机理入手,给出了反射式变掺杂NEA Ga N光电阴极内建电场和量子效率的计算公式.利用初步设计的变掺杂NEA Ga N光电阴极,介绍了变掺杂NEA Ga N阴极的激活过程和激活光电流的变化特点.结合国内外典型的变掺杂NEA Ga N阴极的量子效率曲线,分析了Ga N光电阴极量子效率曲线的特点.结果显示:由于内建电场的存在,反射式变掺杂NEA Ga N光电阴极量子效率在240 nm处即可达到56%,在较宽的入射光波长范围内,阴极具有相对平稳的量子效率,量子效率值随入射光子能量的增加而增加,并且量子效率曲线在阈值附近表现出了明显的锐截止特性.展开更多
Photoelectrocatalytic(PEC)production of fuels and chemicals by using solar energy,water,and CO_(2) paves a promising avenue toward carbon neutrality.Over the past decades,for accelerating this process,a variety of pho...Photoelectrocatalytic(PEC)production of fuels and chemicals by using solar energy,water,and CO_(2) paves a promising avenue toward carbon neutrality.Over the past decades,for accelerating this process,a variety of photocathodes have been explored.Among them,the hybrid of GaN nanowires(NWs)and planar silicon has appeared as a disruptive platform for this grand topic,owing to their distinctive structural,optoelectronic,and catalytic properties.This review illustrates the most recent advances in GaN NWs/Si-based photocathodes for CO_(2) reduction reactions powered by simulated sunlight,beginning with a discussion of the critical requirements and fundamental challenges of PEC CO_(2) reduction.The characteristics of GaN NWs/Si are then discussed,showing its great potential in precisely controlling the behavior of photons,charges,and chemical species.As the focus of this review,the progress on the PEC CO_(2) reduction reactions toward different products over GaN NWs/Si-based photocathodes is highlighted.In the end,the challenges and prospects of GaN NWs/Si-based photocathodes for the practical synthesis of solarfuels and chemicals are proposed.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61301023)the Science and Technology on Low-Light-Level Nigh Vision Laboratory Foundation,China(Grant No.BJ2014001)
文摘In order to develop the photodetector for effective blue-green response, the 18-mm-diameter vacuum image tube combined with the transmission-mode Alo.7Gao.3Aso.9Po.1/GaAso.9Po.1 photocathode grown by molecular beam epitaxy is tentatively fabricated. A comparison of photoelectric property, spectral characteristic and performance parameter be- tween the transmission-mode GaAsP-based and blue-extended GaAs-based photocathodes shows that the GaAsP-based photocathode possesses better absorption and higher quantum efficiency in the blue-green waveband, combined with a larger surface electron escape probability. Especially, the quantum efficiency at 532 nm for the GaAsP-based photocathode achieves as high as 59%, nearly twice that for the blue-extended GaAs-based one, which would be more conducive to the underwater range-gated imaging based on laser illumination. Moreover, the simulation results show that the favorable blue-green response can be achieved by optimizing the emission-layer thickness in a range of 0.4 μm-0.6 μm.
基金supported by the National Natural Science Foundation of China(Grant Nos.60801036 and 61067001)the Key Science and Technology Project of Henan Province of China(Grant No.112102210202)the Research and Innovation Plan for Graduate Students of Jiangsu Higher Education Institutions of China(Grant No.CX09B_096Z)
文摘Two types of transmission-mode GaAs photocathodes grown by molecular beam epitaxy are compared in terms of activation process and spectral response, one has a gradient-doping structure and the other has a uniform-doping structure. The experimental results show that the gradient-doping photocathode can obtain a higher photoemission capability than the uniform-doping one. As a result of the downward graded band-bending structure, the cathode performance parameters, such as the electron average diffusion length and the surface electron escape probability obtained by fitting quantum yield curves, are greater for the gradient-doping photocathode. The electron diffusion length is within a range of from 2.0 to 5.4μm for doping concentration varying from 10^19 to 10^18 cm^-3 and the electron average diffusion length of the gradient-doping photocathode achieves 3.2 μm.
基金supported by the National Natural Science Foundation of China (Grant No. 60678043)the Research and Innovation Plan for Graduate Students of Jiangsu Higher Education Institutions of China (Grant No. CX09B-096Z)
文摘A transmission-mode GaAs photocathode includes four layers of glass, Si3N4, Gal-xAlxAs and GaAs. A gradientdoping photocathode sample was obtained by molecular beam epitaxy and its transmittance was measured by spectrophotometer from 600 nm to 1100 nm. The theoretical transmittance is derived and simulated based on the matrix formula for thin film optics. The simulation results indicate the influence of the transition layers and the three thin-film layers except glass on the transmittance spectra. In addition, a fitting coefficient needed for error modification enters into the fitted formula. The fitting results show that the relative error in the full spectrum reduces from 19.51% to 4.35% after the formula is modified. The coefficient and the thicknesses are gained corresponding to the minimum relative error, meanwhile each layer and total thin-film thickness deviation in the module can be controlled within 73. The presence of glass layer roughness, layer interface effects and surface oxides is interpreted on the modification.
基金supported by the National Natural Science Foundation of China (Grant No. 60871012)the Research Fund of Nanjing University of Science and Technology (Grant No. 2010ZYTS032)
文摘We study the photoemission process of graded-doping CaN photocathode and find that the built-in electric fields can increase the escape probability and the effective diffusion length of photo-generated electrons, which results in the enhancement of quantum efficiency. The intervalley scattering mechanism and the lattice scattering mechanism in high electric fields are also investigated. To prevent negative differential mobility from appearing, the surface doping concentration needs to be optimized, and it is calculated to be 3.19×10^17 cm-3. The graded-doping GaN photocathode with higher performance can be realized by further optimizing the doping profile.
基金Projects supported by the National Natural Science Foundation of China (Grant No. 60871012)the National Key Laboratory of Science and Technology Foundation on Low Light Level Night Vision (Grant No. J20110104)the Research and Innovation Plan for Graduate Students of Jiangsu Higher Education Institutions (Grant No. CXZZ11 0238)
文摘GaN samples 1-3 are cleaned by a 2:2:1 solution of sulfuric acid(98%) to hydrogen peroxide(30%) to de-ionized water;hydrochloric acid(37%);or a 4:1 solution of sulfuric acid(98%) to hydrogen peroxide(30%).The samples are activated by Cs/O after the same annealing process.X-ray photoelectron spectroscopy after the different ways of wet chemical cleaning shows:sample 1 has the largest proportion of Ga,N,and O among the three samples,while its C content is the lowest.After activation the quantum efficiency curves show sample 1 has the best photocathode performance.We think the wet chemical cleaning method is a process which will mainly remove C contamination.
文摘从变掺杂负电子亲和势(NEA)Ga N光电阴极材料的光电发射机理入手,给出了反射式变掺杂NEA Ga N光电阴极内建电场和量子效率的计算公式.利用初步设计的变掺杂NEA Ga N光电阴极,介绍了变掺杂NEA Ga N阴极的激活过程和激活光电流的变化特点.结合国内外典型的变掺杂NEA Ga N阴极的量子效率曲线,分析了Ga N光电阴极量子效率曲线的特点.结果显示:由于内建电场的存在,反射式变掺杂NEA Ga N光电阴极量子效率在240 nm处即可达到56%,在较宽的入射光波长范围内,阴极具有相对平稳的量子效率,量子效率值随入射光子能量的增加而增加,并且量子效率曲线在阈值附近表现出了明显的锐截止特性.
基金supported by the Startup Fund of Shanghai Jiao Tong University and the National Natural Foundation of China(22109095)Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University(21TQ1400211).
文摘Photoelectrocatalytic(PEC)production of fuels and chemicals by using solar energy,water,and CO_(2) paves a promising avenue toward carbon neutrality.Over the past decades,for accelerating this process,a variety of photocathodes have been explored.Among them,the hybrid of GaN nanowires(NWs)and planar silicon has appeared as a disruptive platform for this grand topic,owing to their distinctive structural,optoelectronic,and catalytic properties.This review illustrates the most recent advances in GaN NWs/Si-based photocathodes for CO_(2) reduction reactions powered by simulated sunlight,beginning with a discussion of the critical requirements and fundamental challenges of PEC CO_(2) reduction.The characteristics of GaN NWs/Si are then discussed,showing its great potential in precisely controlling the behavior of photons,charges,and chemical species.As the focus of this review,the progress on the PEC CO_(2) reduction reactions toward different products over GaN NWs/Si-based photocathodes is highlighted.In the end,the challenges and prospects of GaN NWs/Si-based photocathodes for the practical synthesis of solarfuels and chemicals are proposed.