This paper reports the ultrastructural changes of trichomonas vaginaiis (T. vag. ) under the action of s-(-)usnic acid sodium in vitro. These changes can be shown by the following results:At first, the degranulation o...This paper reports the ultrastructural changes of trichomonas vaginaiis (T. vag. ) under the action of s-(-)usnic acid sodium in vitro. These changes can be shown by the following results:At first, the degranulation of the rough endoplasmic reticulum (RER) took place, the polyribosomes disaggregated. And then, the Golgi complex and the endoplasmic reticulum dilated. The cytoplasmic matrix presented and inhomogeneous apperance. Finally, the biomembrane loosed and fractured.The cell nuclei presented the karyorrhexis.展开更多
细胞内肌动蛋白(actin)通过与actin结合蛋白(actin binding proteins,ABPs)相互作用,形成以F-actin为基础多种ABPs参与装配的高度有序的超分子聚合结构,行使各种重要生理功能。在体外聚合条件下,不存在F-actin稳定剂时纯化的actin主要...细胞内肌动蛋白(actin)通过与actin结合蛋白(actin binding proteins,ABPs)相互作用,形成以F-actin为基础多种ABPs参与装配的高度有序的超分子聚合结构,行使各种重要生理功能。在体外聚合条件下,不存在F-actin稳定剂时纯化的actin主要通过自装配形成大尺度的聚集堆积结构;这种表观无序的结构体系由于被认为不具备细胞功能活性而受到忽视。利用激光原子力显微镜(atomic force microscope,AFM)和透射电子显微镜(transmission electron microscope,TEM)技术,对actin体外通过自装配过程形成的大尺度聚集结构进行了细致的观察和分析。研究发现,actin在体外通过自装配过程除了形成无序的蛋白堆积物之外,还能够聚合形成复杂的离散结构,包括树状分支的纤维丛、无规卷曲的纤维簇以及具有不同直径的长纤维等;这些大尺度纤维复合物明显不同于在ABPs或过量F-actin稳定剂参与下形成的由单根微丝和微丝束构成的聚合结构。表明无ABPs或F-actin稳定剂存在的情况下,体外聚合的F-actin在一定条件下可进一步聚集缠绕形成复杂的纤维结构或无序的蛋白堆积物。事实上,actin自装配过程反映了其固有的聚合热力学特性,深入探索将有助于理解ABPs在体内actin超分子聚合结构体系装配中的调控作用及其分子机制。展开更多
[ Objective] The research aimed to explore the manufacturing methods of scanning electron microscope (SEM) and transmission electron microscopy (TEM) for oocyte and provide technical support for related research. ...[ Objective] The research aimed to explore the manufacturing methods of scanning electron microscope (SEM) and transmission electron microscopy (TEM) for oocyte and provide technical support for related research. [ Method] Based on GV-and MII-stage oocytes, samples of SEM and TEM were prepared respectively, then ultrastructure changes were observed. [ Result] The results showed that the method needed few samples, keep intact cell morphology and can see clear ultrastructure. [Conclusion] The method is suitable for ultrastructural observation of oocyte.展开更多
对生长在Si和MgO单晶基片上的不同厚度的单层NbN薄膜、双层薄膜AlN/NbN以及三层薄膜NbN/AlN/NbN应用透射电子显微镜(Transmission Electron Microscope,TEM)技术进行了分析研究,对这几种薄膜样品的微观结构、薄膜厚度以及各个边界的一...对生长在Si和MgO单晶基片上的不同厚度的单层NbN薄膜、双层薄膜AlN/NbN以及三层薄膜NbN/AlN/NbN应用透射电子显微镜(Transmission Electron Microscope,TEM)技术进行了分析研究,对这几种薄膜样品的微观结构、薄膜厚度以及各个边界的一些直观细节给出了较为清晰的图像。由透射电子显微镜的电子衍射图案计算了薄膜和单晶衬底的晶格常数,并与我们以前采用X射线衍射技术分析的结果进行了比较,结果有很好的吻合。展开更多
This study shows that submicron/nanoparticles found in bacterial cells (S. aureus) incubated with polyurethane (a material commonly used for prostheses in odontostomatology) are a consequence of biodestruction. The pr...This study shows that submicron/nanoparticles found in bacterial cells (S. aureus) incubated with polyurethane (a material commonly used for prostheses in odontostomatology) are a consequence of biodestruction. The presence of polyurethane nanoparticles into bacterial vesicles suggests that the internalization process occurs through endocytosis. TEM and FIB/SEM are a suitable set of correlated instruments and techniques for this multi facet investigation: polyurethane particles influence the properties of S. aureus from the morpho-functional standpoint that may have undesirable effects on the human body. S. aureus and C. albicans are symbiotic microorganisms;it was observed that C. albicans has a similar interaction with polyurethane and an increment of the biodestruction capacity is expected by its mutual work with S. aureus.展开更多
Our research introduces a groundbreaking chemical reduction method for synthesizing silver nanoparticles, marking a significant advancement in the field. The nanoparticles were meticulously characterized using various...Our research introduces a groundbreaking chemical reduction method for synthesizing silver nanoparticles, marking a significant advancement in the field. The nanoparticles were meticulously characterized using various techniques, including optical analysis, structural analysis, transmission electron microscopy (TEM), and field-emission scanning electron microscope (FESEM). This thorough process instills confidence in the accuracy of our findings. The results unveiled that the silver nanoparticles had a diameter of less than 20 nm, a finding of great importance. The absorption spectrum decreased in the peak wavelength range (405 - 394 mm) with increasing concentrations of Ag nanoparticles in the range (1 - 5%). The XRD results indicated a cubic crystal structure for silver nanoparticles with the lattice constant (a = 4.0855 Å), and Miller indices were (111), (002), (002), and (113). The simulation on the XRD pattern showed a face center cubic phase with space group Fm-3m, providing valuable insights into the structure of the nanoparticles.展开更多
文摘This paper reports the ultrastructural changes of trichomonas vaginaiis (T. vag. ) under the action of s-(-)usnic acid sodium in vitro. These changes can be shown by the following results:At first, the degranulation of the rough endoplasmic reticulum (RER) took place, the polyribosomes disaggregated. And then, the Golgi complex and the endoplasmic reticulum dilated. The cytoplasmic matrix presented and inhomogeneous apperance. Finally, the biomembrane loosed and fractured.The cell nuclei presented the karyorrhexis.
文摘细胞内肌动蛋白(actin)通过与actin结合蛋白(actin binding proteins,ABPs)相互作用,形成以F-actin为基础多种ABPs参与装配的高度有序的超分子聚合结构,行使各种重要生理功能。在体外聚合条件下,不存在F-actin稳定剂时纯化的actin主要通过自装配形成大尺度的聚集堆积结构;这种表观无序的结构体系由于被认为不具备细胞功能活性而受到忽视。利用激光原子力显微镜(atomic force microscope,AFM)和透射电子显微镜(transmission electron microscope,TEM)技术,对actin体外通过自装配过程形成的大尺度聚集结构进行了细致的观察和分析。研究发现,actin在体外通过自装配过程除了形成无序的蛋白堆积物之外,还能够聚合形成复杂的离散结构,包括树状分支的纤维丛、无规卷曲的纤维簇以及具有不同直径的长纤维等;这些大尺度纤维复合物明显不同于在ABPs或过量F-actin稳定剂参与下形成的由单根微丝和微丝束构成的聚合结构。表明无ABPs或F-actin稳定剂存在的情况下,体外聚合的F-actin在一定条件下可进一步聚集缠绕形成复杂的纤维结构或无序的蛋白堆积物。事实上,actin自装配过程反映了其固有的聚合热力学特性,深入探索将有助于理解ABPs在体内actin超分子聚合结构体系装配中的调控作用及其分子机制。
基金Supported by Natural Science Foundation of Jiangsu Province(Grant number:BK2008589)Shanghai Committee(Grant num-ber:2003 #14-1)~~
文摘[ Objective] The research aimed to explore the manufacturing methods of scanning electron microscope (SEM) and transmission electron microscopy (TEM) for oocyte and provide technical support for related research. [ Method] Based on GV-and MII-stage oocytes, samples of SEM and TEM were prepared respectively, then ultrastructure changes were observed. [ Result] The results showed that the method needed few samples, keep intact cell morphology and can see clear ultrastructure. [Conclusion] The method is suitable for ultrastructural observation of oocyte.
文摘对生长在Si和MgO单晶基片上的不同厚度的单层NbN薄膜、双层薄膜AlN/NbN以及三层薄膜NbN/AlN/NbN应用透射电子显微镜(Transmission Electron Microscope,TEM)技术进行了分析研究,对这几种薄膜样品的微观结构、薄膜厚度以及各个边界的一些直观细节给出了较为清晰的图像。由透射电子显微镜的电子衍射图案计算了薄膜和单晶衬底的晶格常数,并与我们以前采用X射线衍射技术分析的结果进行了比较,结果有很好的吻合。
文摘This study shows that submicron/nanoparticles found in bacterial cells (S. aureus) incubated with polyurethane (a material commonly used for prostheses in odontostomatology) are a consequence of biodestruction. The presence of polyurethane nanoparticles into bacterial vesicles suggests that the internalization process occurs through endocytosis. TEM and FIB/SEM are a suitable set of correlated instruments and techniques for this multi facet investigation: polyurethane particles influence the properties of S. aureus from the morpho-functional standpoint that may have undesirable effects on the human body. S. aureus and C. albicans are symbiotic microorganisms;it was observed that C. albicans has a similar interaction with polyurethane and an increment of the biodestruction capacity is expected by its mutual work with S. aureus.
文摘Our research introduces a groundbreaking chemical reduction method for synthesizing silver nanoparticles, marking a significant advancement in the field. The nanoparticles were meticulously characterized using various techniques, including optical analysis, structural analysis, transmission electron microscopy (TEM), and field-emission scanning electron microscope (FESEM). This thorough process instills confidence in the accuracy of our findings. The results unveiled that the silver nanoparticles had a diameter of less than 20 nm, a finding of great importance. The absorption spectrum decreased in the peak wavelength range (405 - 394 mm) with increasing concentrations of Ag nanoparticles in the range (1 - 5%). The XRD results indicated a cubic crystal structure for silver nanoparticles with the lattice constant (a = 4.0855 Å), and Miller indices were (111), (002), (002), and (113). The simulation on the XRD pattern showed a face center cubic phase with space group Fm-3m, providing valuable insights into the structure of the nanoparticles.