In the modern age, Wireless Body Area Network (WBAN) becomes very popular everywhere for monitoring healthcare services remotely. However, the WBAN system has lagged in efficient power consumption till now. As WBAN is...In the modern age, Wireless Body Area Network (WBAN) becomes very popular everywhere for monitoring healthcare services remotely. However, the WBAN system has lagged in efficient power consumption till now. As WBAN is formed with several portable devices, low power consumption will ensure battery lifetime. In this paper, an analysis of Transmission Power Control (TPC) over WBAN has been conducted. A ZigBee based WBAN model with different network topologies and data rates has been proposed in the experiment. WBAN data-management technique has been proposed due to reducing more data transmission. Less data transmission reduces overall power consumption. The whole work has been done using OPNET and OMNET++ network simulators. Six sensor nodes have been used with a ZigBee coordinator in the simulation scenario where throughput, load, delay, data traffic, amount of power consumption, packet delivery ratio, etc. have been used as simulation parameters. TPC analysis indicates the power consumptions in different topologies, with different data rates. Several simulation scenarios were run and the results were analyzed in this paper.展开更多
A distributed local adaptive transmit power assignment (LA-TPA) strategy was proposed to construct a topology with better performance according to the environment and application scenario and prolong the network lifet...A distributed local adaptive transmit power assignment (LA-TPA) strategy was proposed to construct a topology with better performance according to the environment and application scenario and prolong the network lifetime.It takes the path loss exponent and the energy control coefficient into consideration with the aim to accentuate the minimum covering district of each node more accurately and precisely according to various network application scenarios.Besides,a self-healing scheme that enhances the robustness of the network was provided.It makes the topology tolerate more dead nodes than existing algorithms.Simulation was done under OMNeT++ platform and the results show that the LA-TPA strategy is more effective in constructing a well-performance network topology based on various application scenarios and can prolong the network lifetime significantly.展开更多
This study addresses the problem of jointly optimizing the transmit beamformers and power control in multi-user multiple-input multiple-output (MIMO) downlink. The objective is minimizing the total transmission powe...This study addresses the problem of jointly optimizing the transmit beamformers and power control in multi-user multiple-input multiple-output (MIMO) downlink. The objective is minimizing the total transmission power while satisfying the signal-to-noise plus interference ratio (SINR) requirement of each user. Before power control, it uses the maximum ratio transmission (MRT) scheme to determine the beamformers due to its attractive properties and the simplicity of handling. For power control it introduces a supermodular game approach and proposes an iterated strict dominance elimination algorithm. The algorithm is proved to converge to the Nash equilibrium. Simulation results indicate that this joint optimization method assures the improvement of performance.展开更多
文摘In the modern age, Wireless Body Area Network (WBAN) becomes very popular everywhere for monitoring healthcare services remotely. However, the WBAN system has lagged in efficient power consumption till now. As WBAN is formed with several portable devices, low power consumption will ensure battery lifetime. In this paper, an analysis of Transmission Power Control (TPC) over WBAN has been conducted. A ZigBee based WBAN model with different network topologies and data rates has been proposed in the experiment. WBAN data-management technique has been proposed due to reducing more data transmission. Less data transmission reduces overall power consumption. The whole work has been done using OPNET and OMNET++ network simulators. Six sensor nodes have been used with a ZigBee coordinator in the simulation scenario where throughput, load, delay, data traffic, amount of power consumption, packet delivery ratio, etc. have been used as simulation parameters. TPC analysis indicates the power consumptions in different topologies, with different data rates. Several simulation scenarios were run and the results were analyzed in this paper.
基金Projects(61101104,61100213) supported by the National Natural Science Foundation of ChinaProject(NY211050) supported by Fund of Nanjing University of Posts and Telecommunications,China
文摘A distributed local adaptive transmit power assignment (LA-TPA) strategy was proposed to construct a topology with better performance according to the environment and application scenario and prolong the network lifetime.It takes the path loss exponent and the energy control coefficient into consideration with the aim to accentuate the minimum covering district of each node more accurately and precisely according to various network application scenarios.Besides,a self-healing scheme that enhances the robustness of the network was provided.It makes the topology tolerate more dead nodes than existing algorithms.Simulation was done under OMNeT++ platform and the results show that the LA-TPA strategy is more effective in constructing a well-performance network topology based on various application scenarios and can prolong the network lifetime significantly.
基金the National Natural Science Foundation of China (60602057) the Natural Science Foundation of Chongqing Science and Technology Commission (CSTC, 2006BB2360).
文摘This study addresses the problem of jointly optimizing the transmit beamformers and power control in multi-user multiple-input multiple-output (MIMO) downlink. The objective is minimizing the total transmission power while satisfying the signal-to-noise plus interference ratio (SINR) requirement of each user. Before power control, it uses the maximum ratio transmission (MRT) scheme to determine the beamformers due to its attractive properties and the simplicity of handling. For power control it introduces a supermodular game approach and proposes an iterated strict dominance elimination algorithm. The algorithm is proved to converge to the Nash equilibrium. Simulation results indicate that this joint optimization method assures the improvement of performance.