We have studied the structural and atomic transport properties of liquid f-shell Yb in the temperature range 1123 K–1473 K. Pair interactions between atoms are derived using a local pseudopotential. The potential par...We have studied the structural and atomic transport properties of liquid f-shell Yb in the temperature range 1123 K–1473 K. Pair interactions between atoms are derived using a local pseudopotential. The potential parameters are fitted to the phonon dispersion curve at room temperature. The local pseudopotential used in the present study is computationally more efficient with only three parameters, and it is found to be transferable to the liquid phase without changing the parameters.Since the various computed properties agree with reported theoretical and experimental findings, the adopted fitting scheme is justified. As a significant outcome of the study, we find that(i) the melting in Yb is governed by the Lindemann's law,(ii)the mass transport mechanism obeys the Arrhenius law,(iii) the role of the three-particle correlation function in deriving the velocity autocorrelation function is small,(iv) the mean-square atomic displacement is more sensitive to the choice of interaction potential than the other bulk properties, and(v) liquid Yb does not show liquid–liquid phase transition within the studied temperature range. Further, due to the good description of the structural and mass transport properties, we propose that Yb remains divalent at reduced density.展开更多
The present work is concerned with determining the viscosity,diffusion,thermal diffusion factor and thermal conductivity of five equimolar binary gas mixtures including:CF4-He,CF4-Ne,CF4-Ar,CF4-Kr,CF4-Xe from the prin...The present work is concerned with determining the viscosity,diffusion,thermal diffusion factor and thermal conductivity of five equimolar binary gas mixtures including:CF4-He,CF4-Ne,CF4-Ar,CF4-Kr,CF4-Xe from the principle of corresponding states of viscosity by the inversion technique.The Lennard-Jones (12-6) model potential is used as the initial model potential.The calculated interaction potential energies obtained from the inversion procedure is employed to reproduce the viscosities,diffusions,thermal diffusion factors,and thermal conductivities.The accuracies of the calculated viscosity and diffusion coefficients were 1% and 4%,respectively.展开更多
The free carrier density and mobility in n-type 4H-SiC substrates and epilayers were determined by accurately analysing the frequency shift and the full-shape of the longitudinal optic phono-plasmon coupled (LOPC) m...The free carrier density and mobility in n-type 4H-SiC substrates and epilayers were determined by accurately analysing the frequency shift and the full-shape of the longitudinal optic phono-plasmon coupled (LOPC) modes, and compared with those determined by Hall-effect measurement and that provided by the vendors. The transport properties of thick and thin 4H-SiC epilayers grown in both vertical and horizontal reactors were also studied. The free carrier density ranges between 2× 10^18 cm^-3 and 8× 10^18 cm^-3with a carrier mobility of 30-55 cm2/(V.s) for ntype 4H-SiC substrates and 1× 10^16 -3× 10^16 cm^-3 with mobility of 290-490 cm2/(V.s) for both thick and thin 4H-SiC epilayers grown in a horizontal reactor, while thick 4H-SiC epilayers grown in vertical reactor have a slightly higher carrier concentration of around 8.1×10^16 cm^-3 with mobility of 380 cm2/(V.s). It was shown that Raman spectroscopy is a potential technique for determining the transport properties of 4H-SiC wafers with the advantage of being able to probe very small volumes and also being non-destructive. This is especially useful for future mass production of 4H-SiC epi-wafers.展开更多
Tl-based superconducting devices have been drawn much attention for their high transition temperature(T_c), which allow the high temperature superconductors(HTS) devices to operate at temperature near 100 K. The reali...Tl-based superconducting devices have been drawn much attention for their high transition temperature(T_c), which allow the high temperature superconductors(HTS) devices to operate at temperature near 100 K. The realization of Tlbased devices will promote the research and application of HTS devices. In this work, we present transport properties of Tl_(2) Ba_(2) CaCu_(2) O_(8)(Tl-2212) microbridges across a low-angle step on LaAlO_(3)(LAO) substrate. We experimentally demonstrate intrinsic Josephson effects(IJEs) in Tl-2212 films by tailoring the geometry, i.e., reducing the width of the microbridges. In the case of a 1 μm width microbridge, in addition to the observation of voltage branches and remarkable hysteresis on the current–voltage(I–V) characteristics, the temperature dependence of differential resistance shows a finite resistance above 60 K when the bias current is below the critical current. For comparison, the wider microbridges are also investigated, exhibiting a highly critical current but do not showing obvious IJEs.展开更多
By finely controlling the deposition parameters in the pulsed electron deposition process, granular La 2/3 Ca 1/3 MnO 3 (LCMO) film was grown on silicon substrates. The substrate temperature, ambient pressure in the...By finely controlling the deposition parameters in the pulsed electron deposition process, granular La 2/3 Ca 1/3 MnO 3 (LCMO) film was grown on silicon substrates. The substrate temperature, ambient pressure in the deposition chamber and acceleration potential for the electron beam were all found to affect the grain size of the film, resulting in different morphologies of the samples. Transport properties of the obtained granular films, especially the magnetoresistance (MR), were studied. Prominent low-field MR was observed in all samples, indicating the forming of grain boundaries in the sample. The low-field MR show great sensitive to the morphology evolution, which reaches the highest value of about 40% for the sample with the grain size of about 250 nm. More interestingly, positive-MR (p-MR) was also detected above 300 K when low magnetic field applying, whereas it disappeared with higher magnetic field applied up to 1.5 and 2 Tesla. Instead of the spin- polarized tunneling process being commonly regarded as a responsible reason, lattice mismatch between LCMO film and silicon substrate appears to be the origin of the p-MR展开更多
The equation of states,diffusions,and viscosities of strongly coupled Fe at 80 and 240 eV with densities from 1.6 to 40 g/cm^(3) are studied by orbital-free molecular dynamics,classical molecular dynamics with a corre...The equation of states,diffusions,and viscosities of strongly coupled Fe at 80 and 240 eV with densities from 1.6 to 40 g/cm^(3) are studied by orbital-free molecular dynamics,classical molecular dynamics with a corrected Yukawa potential and compared with the results from average atom model.A new local pseudopotential is generated for orbital free calculations.For low densities,the Yukawa model captures the correct ionic interaction behavior around the first peak of the radial distribution function(RDF),thus it gives correct RDFs and transport coefficients.For higher densities,the scaled transformation of the Yukawa potential or adding a short range repulsion part to the Yukawa potential can give correct RDFs and transport coefficients.The corrected potentials are further validated by the force matching method.展开更多
The present work is concerned with extracting information about intermolecular potential energies of binary mixtures of CO2 with C2H6, C3H8, n-C4Hlo and iso-C4Hlo, by the usage of the inversion method, and then predic...The present work is concerned with extracting information about intermolecular potential energies of binary mixtures of CO2 with C2H6, C3H8, n-C4Hlo and iso-C4Hlo, by the usage of the inversion method, and then predicting the dilute gas transport properties of the mixtures. Using the inverted pair potential energies, the Chap- man-Enskog version of the kinetic theory was applied to calculate transport properties, except thermal conductivity of mixtures. The calculation of thermal conductivity through the methods of Schreiber et al. and Uribe et al. was discussed. Calculations were performed over a wide temperature range and equimolar composition. Rather accurate correlations for the viscosity coefficients of the mixtures in the temperature range were reproduced from the pre- sent unlike intermolecular potential energies. Our estimated accuracies for the viscosity are within ±2%. Acceptable agreement between the predicted values of the viscosity and thermal conductivity with the literature values demon- strates the predictive power of the inversion scheme. In the case of thermal conductivity our results are in favor of the preference of Uribe et al.'s method over Schreiber et al.'s scheme.展开更多
Based on the first-principles computational method and the elastic scattering Green's function theory, we have investigated the electronic transport properties of different oligothiophene molecular junctions theoreti...Based on the first-principles computational method and the elastic scattering Green's function theory, we have investigated the electronic transport properties of different oligothiophene molecular junctions theoretically. The numerical results show that the difference of geometric symmetries of the oligothiophene molecules leads to the difference of the contact configurations between the molecule and the electrodes, which results in the difference of the coupling parameters between the molecules and electrodes as well as the delocalization properties of the molecular orbitals. Hence, the series of oligothiophene molecular junctions display unusual conductive properties on the length dependence.展开更多
We have performed density-functional calculations of the transport properties of the zigzag graphene nanoribbon (ZGNR) adsorbed with a single iron atom. Two adsorption configurations are considered, i.e., iron adsor...We have performed density-functional calculations of the transport properties of the zigzag graphene nanoribbon (ZGNR) adsorbed with a single iron atom. Two adsorption configurations are considered, i.e., iron adsorbed on the edge and on the interior of the nanoribbon. The results show that the transport features of the two configurations are similar. However, the transport properties are modified due to the scattering effects induced by coupling of the ZGNR band states to the localized 3d-orbital state of the iron atom. More importantly, one can find that several dips appear in the transmission curve, which is closely related to the above mentioned coupling. We expect that our results will have potential applications in graphene-based spintronic devices,展开更多
We investigate atomic and electronic structures of boron nanotubes (BNTs) by using the density functional theory (DFT). The transport properties of BNTs with different diameters and chiralities are studied by the ...We investigate atomic and electronic structures of boron nanotubes (BNTs) by using the density functional theory (DFT). The transport properties of BNTs with different diameters and chiralities are studied by the Keldysh nonequilibrium Green function (NEGF) method. It is found that the cohesive energies and conductances of BNTs decrease as their diameters decrease. It is more difficult to form (N, 0) tubes than (M, M) tubes when the diameters of the two kinds of tubes are comparable. However, the (N, 0) tubes have a higher conductance than the (M, M) tubes. When the BNTs are connected to gold electrodes, the coupling between the BNTs and the electrodes will affect the transport properties of tubes significantly.展开更多
The transport properties of hexagonal boron-nitride nanoribbons under the uniaxial strain are investigated by the Green's function method. We find that the transport properties of armchair boron-nitride nanoribbon st...The transport properties of hexagonal boron-nitride nanoribbons under the uniaxial strain are investigated by the Green's function method. We find that the transport properties of armchair boron-nitride nanoribbon strongly depend on the strain. In particular, the features of the conductance steps such as position and width are significantly changed by strain. As a strong tensile strain is exerted on the nanoribbon, the highest conductance step disappears and subsequently a dip emerges instead. The energy band structure and the local current density of armchair boron nitride nanoribbon under strain are calculated and analysed in detail to explain these characteristics. In addition, the effect of strain on the conductance of zigzag boron-nitride nanoribbon is weaker than that of armchair boron nitride nanoribbon.展开更多
Perovskite-based materials can be widely used in the aerospace and transportation field. Perovskite man-ganese oxides La0.7Sr0.3MnO3 (LSMO) thin films were grown on LaAlO3 (100) and Si (100) single crystal sub-s...Perovskite-based materials can be widely used in the aerospace and transportation field. Perovskite man-ganese oxides La0.7Sr0.3MnO3 (LSMO) thin films were grown on LaAlO3 (100) and Si (100) single crystal sub-strates by the polymer-assisted chemical solution deposi-tion (PACSD) method. Electronic transport behavior, microstructure, and magnetoresistance (MR) of LSMO thin films on different substrates were investigated. The resis-tance of LSMO films fabricated on LaAlO3 substrates is smaller than that on the Si substrates. The magnetic field reduces resistance of LSMO films both on Si and LAO in the wide temperature region, when the insulator-metal transition temperature shifts to higher temperature. The low-field magnetoresistance of LSMO films on Si in low temperature range at 1 T is larger than that of LSMO films on LAO. However, the MR of LSMO film on LAO films at room-temperature is about 5.17%. The thin films are smooth and dense with uniform nanocrystal size grain. These results demonstrate that PACSD is an effective technique for producing high quality LSMO films, which is significant to improve the magnetic properties and the application of automotive sensor.展开更多
Magnetotransport properties of two-dimensional electron gases (2DEG) in AlxGa1-x N/GaN heterostructures with different Al compositions are investigated by magnetotransport measurements at low temperatures and in hig...Magnetotransport properties of two-dimensional electron gases (2DEG) in AlxGa1-x N/GaN heterostructures with different Al compositions are investigated by magnetotransport measurements at low temperatures and in high magnetic fields. It is found that heterostructures with a lower Al composition in the barrier have lower 2DEG concentration and higher 2DEG mobility.展开更多
The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons(AGNRs)with different widths are investigated by applying the non-equilibrium Green's function...The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons(AGNRs)with different widths are investigated by applying the non-equilibrium Green's function formalism combined with first-principles density functional theory.The calculated results show that the width and doping play significant roles in the electronic transport properties of the molecular junction.A higher current can be obtained for the molecular junctions with the tailoring AGNRs with W=11.Furthermore,the current of boron-doped tailoring AGNRs with widths W=7 is nearly four times larger than that of the undoped one,which can be potentially useful for the design of high performance electronic devices.展开更多
Based on the nonequilibrium Green function method and density functional theory calculations, we theoretically investigate the effect of chirality on the electronic transport properties of thioxanthene-based molecular...Based on the nonequilibrium Green function method and density functional theory calculations, we theoretically investigate the effect of chirality on the electronic transport properties of thioxanthene-based molecular switch. The molecule comprises the switch which can exhibit different chiralities, that is, cis-form and trans-form by ultraviolet or visible irradiation. The results clearly reveal that the switching behaviors can be realized when the molecule converts between cis-form and trans-form. ~urthermore, the on-off ratio can be modulated by the chirality of the carbon nanotube electrodes. The maximum on-off ratio can reach 109 at 0.4 V for the armchair junction, suggesting potential applications of this type of junctions in future design of functional molecular devices.展开更多
In this review article, the recent experimental and theoretical research progress in Bi2Se3-and Bi2Te3-based topological insulators is presented, with a focus on the transport properties and modulation of the transpor...In this review article, the recent experimental and theoretical research progress in Bi2Se3-and Bi2Te3-based topological insulators is presented, with a focus on the transport properties and modulation of the transport properties by doping with nonmagnetic and magnetic elements. The electrical transport properties are discussed for a few different types of topological insulator heterostructures, such as heterostructures formed by Bi2Se3-and Bi2Te3-based binary/ternary/quaternary compounds and superconductors, nonmagnetic and magnetic metals, or semiconductors.展开更多
In our previous work,we calculated transport properties of pure gaseous polyatomic carbon tetrafluoride(CF4) and five equimolar binary gas mixtures of CF4 with noble gases through inversion technique.The present work ...In our previous work,we calculated transport properties of pure gaseous polyatomic carbon tetrafluoride(CF4) and five equimolar binary gas mixtures of CF4 with noble gases through inversion technique.The present work is a continuation of our studies on determining the transport properties of binary gas mixtures CF4 with some gases including three diatomic molecules CO,N2,and O2,a linear polyatomic CO2,and two non-linear polyatomic molecules SF6 and CH4.The Chapman-Enskog and Vesovic-Wakeham methods as well as inversion procedure are used to determine the viscosities,diffusivities,and thermal conductivities,which deviates from the literature values within 1%,4%,and 5%,respectively.展开更多
La2/3 Sr1/3 Mn1-x ZnxO3films (x =0.05, 0.1,0.3, and 0.5) were prepared using magnetron sputtering method, and the effect of Zn doping on transport properties of the films was studied. An analysis of X-ray diffractio...La2/3 Sr1/3 Mn1-x ZnxO3films (x =0.05, 0.1,0.3, and 0.5) were prepared using magnetron sputtering method, and the effect of Zn doping on transport properties of the films was studied. An analysis of X-ray diffraction showed that the main phase of the bulk target was orthorhombic and the films had better epitaxial character. It was found that the films with x =0.05 and x =0.1 exhibited typical insulator-metal transition. No transition of the films with x≥0.3 was observed and the dominant transport was variable-range hopping due to observable secondary phase ZnO. These could be attributed to the Zn doping effect on manganites.展开更多
Single-crystalline samples of Eu/Ba-filled Sn-based type-Ⅷ clathrate are prepared by the Ga flux method with different stoichiometric ratios. The electrical transport properties of the samples are optimized by Eu dop...Single-crystalline samples of Eu/Ba-filled Sn-based type-Ⅷ clathrate are prepared by the Ga flux method with different stoichiometric ratios. The electrical transport properties of the samples are optimized by Eu doping. Results indicate that Eu atoms tend to replace Ba atoms. With the increase of the Eu initial content, the carrier density increases and the carrier mobility decreases, which leads to an increase of the Seebeck coefficient. By contrast, the electrical conductivity decreases. Finally, the sample with Eu initial content of x = 0.75 behaves with excellent electrical properties, which shows a maximal power factor of 1.51 mW·m^-1K^-2 at 480K, and the highest ZT achieved is 0.87 near the temperature of 483K.展开更多
Defect-based engineering of carbon nanostructures is becoming an important and powerful method to modify the electron transport properties in graphene nanoribbon FETs. In this paper, the impact of the position and sym...Defect-based engineering of carbon nanostructures is becoming an important and powerful method to modify the electron transport properties in graphene nanoribbon FETs. In this paper, the impact of the position and symmetry of the ISTW defect on the performance of low dimensional 9AGNR double-gate graphene nanoribbon FET (DG-GNRFET) is investigated. Analyzing the transmission spectra, density of states and current-voltage characteristics shows that the defect effect on the electron transport is considerably varied depending on the positions and the orientations (the symmetric and asymmetric configuration) of the ISTW defect in the channel length. Based on the results, the asymmetric ISTW defect leads to a more controllability of the gate voltages over drain current, and drain current increases more than 5 times. The results have also con rmed the ISTW defect engineering potential on controlling the channel electrical current of DG-AGNR FET.展开更多
文摘We have studied the structural and atomic transport properties of liquid f-shell Yb in the temperature range 1123 K–1473 K. Pair interactions between atoms are derived using a local pseudopotential. The potential parameters are fitted to the phonon dispersion curve at room temperature. The local pseudopotential used in the present study is computationally more efficient with only three parameters, and it is found to be transferable to the liquid phase without changing the parameters.Since the various computed properties agree with reported theoretical and experimental findings, the adopted fitting scheme is justified. As a significant outcome of the study, we find that(i) the melting in Yb is governed by the Lindemann's law,(ii)the mass transport mechanism obeys the Arrhenius law,(iii) the role of the three-particle correlation function in deriving the velocity autocorrelation function is small,(iv) the mean-square atomic displacement is more sensitive to the choice of interaction potential than the other bulk properties, and(v) liquid Yb does not show liquid–liquid phase transition within the studied temperature range. Further, due to the good description of the structural and mass transport properties, we propose that Yb remains divalent at reduced density.
基金Research Committees of Shiraz University and Shiraz University of Technology for supporting this project and making computer facilities available
文摘The present work is concerned with determining the viscosity,diffusion,thermal diffusion factor and thermal conductivity of five equimolar binary gas mixtures including:CF4-He,CF4-Ne,CF4-Ar,CF4-Kr,CF4-Xe from the principle of corresponding states of viscosity by the inversion technique.The Lennard-Jones (12-6) model potential is used as the initial model potential.The calculated interaction potential energies obtained from the inversion procedure is employed to reproduce the viscosities,diffusions,thermal diffusion factors,and thermal conductivities.The accuracies of the calculated viscosity and diffusion coefficients were 1% and 4%,respectively.
基金supported by the National Natural Science Foundation of China (Grant No. 60876003)the Knowledge Innovation Project of Chinese Academy of Sciences (Grant Nos. Y072011000 and ISCAS2008T04)the Science and Technology Projects of the State Grid Corporation of China (ZL71-09-001)
文摘The free carrier density and mobility in n-type 4H-SiC substrates and epilayers were determined by accurately analysing the frequency shift and the full-shape of the longitudinal optic phono-plasmon coupled (LOPC) modes, and compared with those determined by Hall-effect measurement and that provided by the vendors. The transport properties of thick and thin 4H-SiC epilayers grown in both vertical and horizontal reactors were also studied. The free carrier density ranges between 2× 10^18 cm^-3 and 8× 10^18 cm^-3with a carrier mobility of 30-55 cm2/(V.s) for ntype 4H-SiC substrates and 1× 10^16 -3× 10^16 cm^-3 with mobility of 290-490 cm2/(V.s) for both thick and thin 4H-SiC epilayers grown in a horizontal reactor, while thick 4H-SiC epilayers grown in vertical reactor have a slightly higher carrier concentration of around 8.1×10^16 cm^-3 with mobility of 380 cm2/(V.s). It was shown that Raman spectroscopy is a potential technique for determining the transport properties of 4H-SiC wafers with the advantage of being able to probe very small volumes and also being non-destructive. This is especially useful for future mass production of 4H-SiC epi-wafers.
文摘Tl-based superconducting devices have been drawn much attention for their high transition temperature(T_c), which allow the high temperature superconductors(HTS) devices to operate at temperature near 100 K. The realization of Tlbased devices will promote the research and application of HTS devices. In this work, we present transport properties of Tl_(2) Ba_(2) CaCu_(2) O_(8)(Tl-2212) microbridges across a low-angle step on LaAlO_(3)(LAO) substrate. We experimentally demonstrate intrinsic Josephson effects(IJEs) in Tl-2212 films by tailoring the geometry, i.e., reducing the width of the microbridges. In the case of a 1 μm width microbridge, in addition to the observation of voltage branches and remarkable hysteresis on the current–voltage(I–V) characteristics, the temperature dependence of differential resistance shows a finite resistance above 60 K when the bias current is below the critical current. For comparison, the wider microbridges are also investigated, exhibiting a highly critical current but do not showing obvious IJEs.
基金Funded by the National Natural Science Foundation of China(No.10875107)the Aeronautical Science Foundation(No.2010ZF55013)+1 种基金the Basic and Advanced Technology Program of Henan Province (No.112300410229)the Foundation for University Young Key Teacher by Henan Province (No. 2010GGJS-146)
文摘By finely controlling the deposition parameters in the pulsed electron deposition process, granular La 2/3 Ca 1/3 MnO 3 (LCMO) film was grown on silicon substrates. The substrate temperature, ambient pressure in the deposition chamber and acceleration potential for the electron beam were all found to affect the grain size of the film, resulting in different morphologies of the samples. Transport properties of the obtained granular films, especially the magnetoresistance (MR), were studied. Prominent low-field MR was observed in all samples, indicating the forming of grain boundaries in the sample. The low-field MR show great sensitive to the morphology evolution, which reaches the highest value of about 40% for the sample with the grain size of about 250 nm. More interestingly, positive-MR (p-MR) was also detected above 300 K when low magnetic field applying, whereas it disappeared with higher magnetic field applied up to 1.5 and 2 Tesla. Instead of the spin- polarized tunneling process being commonly regarded as a responsible reason, lattice mismatch between LCMO film and silicon substrate appears to be the origin of the p-MR
基金This work is supported by the National Basic Research Program of China(973 Program)under grant no.2013CB922203the National NSFC under grant Nos.11422432 and 11774429+1 种基金Science Challenge Project under grant no.JCKY2016212A501the Advanced Research Foundation of National University of Defense Technology under grant no.JQ14-02-01.
文摘The equation of states,diffusions,and viscosities of strongly coupled Fe at 80 and 240 eV with densities from 1.6 to 40 g/cm^(3) are studied by orbital-free molecular dynamics,classical molecular dynamics with a corrected Yukawa potential and compared with the results from average atom model.A new local pseudopotential is generated for orbital free calculations.For low densities,the Yukawa model captures the correct ionic interaction behavior around the first peak of the radial distribution function(RDF),thus it gives correct RDFs and transport coefficients.For higher densities,the scaled transformation of the Yukawa potential or adding a short range repulsion part to the Yukawa potential can give correct RDFs and transport coefficients.The corrected potentials are further validated by the force matching method.
基金supports from the Shiraz University of Technology
文摘The present work is concerned with extracting information about intermolecular potential energies of binary mixtures of CO2 with C2H6, C3H8, n-C4Hlo and iso-C4Hlo, by the usage of the inversion method, and then predicting the dilute gas transport properties of the mixtures. Using the inverted pair potential energies, the Chap- man-Enskog version of the kinetic theory was applied to calculate transport properties, except thermal conductivity of mixtures. The calculation of thermal conductivity through the methods of Schreiber et al. and Uribe et al. was discussed. Calculations were performed over a wide temperature range and equimolar composition. Rather accurate correlations for the viscosity coefficients of the mixtures in the temperature range were reproduced from the pre- sent unlike intermolecular potential energies. Our estimated accuracies for the viscosity are within ±2%. Acceptable agreement between the predicted values of the viscosity and thermal conductivity with the literature values demon- strates the predictive power of the inversion scheme. In the case of thermal conductivity our results are in favor of the preference of Uribe et al.'s method over Schreiber et al.'s scheme.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.10804064 and No.10974121). The author would like to thank professor Chuan-Kui Wang for his helpful discussions.
文摘Based on the first-principles computational method and the elastic scattering Green's function theory, we have investigated the electronic transport properties of different oligothiophene molecular junctions theoretically. The numerical results show that the difference of geometric symmetries of the oligothiophene molecules leads to the difference of the contact configurations between the molecule and the electrodes, which results in the difference of the coupling parameters between the molecules and electrodes as well as the delocalization properties of the molecular orbitals. Hence, the series of oligothiophene molecular junctions display unusual conductive properties on the length dependence.
基金supported by the National Natural Science Foundation of China(Grant Nos.11374162 and 51032002)the Key Project of the National High Technology Research and Development Program of China(Grant No.2011AA050526)
文摘We have performed density-functional calculations of the transport properties of the zigzag graphene nanoribbon (ZGNR) adsorbed with a single iron atom. Two adsorption configurations are considered, i.e., iron adsorbed on the edge and on the interior of the nanoribbon. The results show that the transport features of the two configurations are similar. However, the transport properties are modified due to the scattering effects induced by coupling of the ZGNR band states to the localized 3d-orbital state of the iron atom. More importantly, one can find that several dips appear in the transmission curve, which is closely related to the above mentioned coupling. We expect that our results will have potential applications in graphene-based spintronic devices,
基金Project supported by the National Natural Science Foundation of China (Grant No 10774176)the National Basic Research Program of China (Grant Nos 2006CB806202 and 2006CB921305)the Shanghai Supercomputing Center,Chinese Academyof Sciences
文摘We investigate atomic and electronic structures of boron nanotubes (BNTs) by using the density functional theory (DFT). The transport properties of BNTs with different diameters and chiralities are studied by the Keldysh nonequilibrium Green function (NEGF) method. It is found that the cohesive energies and conductances of BNTs decrease as their diameters decrease. It is more difficult to form (N, 0) tubes than (M, M) tubes when the diameters of the two kinds of tubes are comparable. However, the (N, 0) tubes have a higher conductance than the (M, M) tubes. When the BNTs are connected to gold electrodes, the coupling between the BNTs and the electrodes will affect the transport properties of tubes significantly.
基金Project supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China(Grant No.708068)the Specialized Research Fund for the Doctoral Program of Higher Education,Ministry of Education of China(Grant No.200805301001)the Open Fund based on Innovation Platform of Hunan Colleges and Universities,China (Grant No.09K034)
文摘The transport properties of hexagonal boron-nitride nanoribbons under the uniaxial strain are investigated by the Green's function method. We find that the transport properties of armchair boron-nitride nanoribbon strongly depend on the strain. In particular, the features of the conductance steps such as position and width are significantly changed by strain. As a strong tensile strain is exerted on the nanoribbon, the highest conductance step disappears and subsequently a dip emerges instead. The energy band structure and the local current density of armchair boron nitride nanoribbon under strain are calculated and analysed in detail to explain these characteristics. In addition, the effect of strain on the conductance of zigzag boron-nitride nanoribbon is weaker than that of armchair boron nitride nanoribbon.
基金supported by the Program of International S&T Cooperation 2013DFA51050National Magnetic Confinement Fusion Science Program (2011GB112001)+2 种基金Science Foundation of Sichuan Province (2011JY0031, 2011JY0130)the financial support of the National Natural Science Foundation of China (No. 51271155, No. 51002125)the Fundamental Research Funds for the Central Universities (SWJTU12CX018)
文摘Perovskite-based materials can be widely used in the aerospace and transportation field. Perovskite man-ganese oxides La0.7Sr0.3MnO3 (LSMO) thin films were grown on LaAlO3 (100) and Si (100) single crystal sub-strates by the polymer-assisted chemical solution deposi-tion (PACSD) method. Electronic transport behavior, microstructure, and magnetoresistance (MR) of LSMO thin films on different substrates were investigated. The resis-tance of LSMO films fabricated on LaAlO3 substrates is smaller than that on the Si substrates. The magnetic field reduces resistance of LSMO films both on Si and LAO in the wide temperature region, when the insulator-metal transition temperature shifts to higher temperature. The low-field magnetoresistance of LSMO films on Si in low temperature range at 1 T is larger than that of LSMO films on LAO. However, the MR of LSMO film on LAO films at room-temperature is about 5.17%. The thin films are smooth and dense with uniform nanocrystal size grain. These results demonstrate that PACSD is an effective technique for producing high quality LSMO films, which is significant to improve the magnetic properties and the application of automotive sensor.
文摘Magnetotransport properties of two-dimensional electron gases (2DEG) in AlxGa1-x N/GaN heterostructures with different Al compositions are investigated by magnetotransport measurements at low temperatures and in high magnetic fields. It is found that heterostructures with a lower Al composition in the barrier have lower 2DEG concentration and higher 2DEG mobility.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11004156 and 11547172the Science and Technology Star Project of Shaanxi Province under Grant No 2016KJXX-45
文摘The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons(AGNRs)with different widths are investigated by applying the non-equilibrium Green's function formalism combined with first-principles density functional theory.The calculated results show that the width and doping play significant roles in the electronic transport properties of the molecular junction.A higher current can be obtained for the molecular junctions with the tailoring AGNRs with W=11.Furthermore,the current of boron-doped tailoring AGNRs with widths W=7 is nearly four times larger than that of the undoped one,which can be potentially useful for the design of high performance electronic devices.
基金Supported by the National Natural Science Foundation of China under Grant No 11004156the Natural Science Foundation of Shaanxi Province under Grant No 2014JM1025+2 种基金the Science and Technology Star Project of Shaanxi Province under Grant No2016KJXX-38the Special Foundation of Key Academic Subjects Development of Shaanxi Province under Grant No 2008-169the Xi'an Polytechnic University Young Scholar Supporting Plan under Grant No 2013-06
文摘Based on the nonequilibrium Green function method and density functional theory calculations, we theoretically investigate the effect of chirality on the electronic transport properties of thioxanthene-based molecular switch. The molecule comprises the switch which can exhibit different chiralities, that is, cis-form and trans-form by ultraviolet or visible irradiation. The results clearly reveal that the switching behaviors can be realized when the molecule converts between cis-form and trans-form. ~urthermore, the on-off ratio can be modulated by the chirality of the carbon nanotube electrodes. The maximum on-off ratio can reach 109 at 0.4 V for the armchair junction, suggesting potential applications of this type of junctions in future design of functional molecular devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51522104,51590883,51331006,and KJZD-EW-M05-3)the National Science Foundation for its financial support under Award DMR-1151534
文摘In this review article, the recent experimental and theoretical research progress in Bi2Se3-and Bi2Te3-based topological insulators is presented, with a focus on the transport properties and modulation of the transport properties by doping with nonmagnetic and magnetic elements. The electrical transport properties are discussed for a few different types of topological insulator heterostructures, such as heterostructures formed by Bi2Se3-and Bi2Te3-based binary/ternary/quaternary compounds and superconductors, nonmagnetic and magnetic metals, or semiconductors.
文摘In our previous work,we calculated transport properties of pure gaseous polyatomic carbon tetrafluoride(CF4) and five equimolar binary gas mixtures of CF4 with noble gases through inversion technique.The present work is a continuation of our studies on determining the transport properties of binary gas mixtures CF4 with some gases including three diatomic molecules CO,N2,and O2,a linear polyatomic CO2,and two non-linear polyatomic molecules SF6 and CH4.The Chapman-Enskog and Vesovic-Wakeham methods as well as inversion procedure are used to determine the viscosities,diffusivities,and thermal conductivities,which deviates from the literature values within 1%,4%,and 5%,respectively.
基金Project supported by the National Natural Science Foundation of China (50331040, 50702046)
文摘La2/3 Sr1/3 Mn1-x ZnxO3films (x =0.05, 0.1,0.3, and 0.5) were prepared using magnetron sputtering method, and the effect of Zn doping on transport properties of the films was studied. An analysis of X-ray diffraction showed that the main phase of the bulk target was orthorhombic and the films had better epitaxial character. It was found that the films with x =0.05 and x =0.1 exhibited typical insulator-metal transition. No transition of the films with x≥0.3 was observed and the dominant transport was variable-range hopping due to observable secondary phase ZnO. These could be attributed to the Zn doping effect on manganites.
基金Supported by the National Natural Science Foundation of China under Grant No 51262032
文摘Single-crystalline samples of Eu/Ba-filled Sn-based type-Ⅷ clathrate are prepared by the Ga flux method with different stoichiometric ratios. The electrical transport properties of the samples are optimized by Eu doping. Results indicate that Eu atoms tend to replace Ba atoms. With the increase of the Eu initial content, the carrier density increases and the carrier mobility decreases, which leads to an increase of the Seebeck coefficient. By contrast, the electrical conductivity decreases. Finally, the sample with Eu initial content of x = 0.75 behaves with excellent electrical properties, which shows a maximal power factor of 1.51 mW·m^-1K^-2 at 480K, and the highest ZT achieved is 0.87 near the temperature of 483K.
文摘Defect-based engineering of carbon nanostructures is becoming an important and powerful method to modify the electron transport properties in graphene nanoribbon FETs. In this paper, the impact of the position and symmetry of the ISTW defect on the performance of low dimensional 9AGNR double-gate graphene nanoribbon FET (DG-GNRFET) is investigated. Analyzing the transmission spectra, density of states and current-voltage characteristics shows that the defect effect on the electron transport is considerably varied depending on the positions and the orientations (the symmetric and asymmetric configuration) of the ISTW defect in the channel length. Based on the results, the asymmetric ISTW defect leads to a more controllability of the gate voltages over drain current, and drain current increases more than 5 times. The results have also con rmed the ISTW defect engineering potential on controlling the channel electrical current of DG-AGNR FET.