BACKGROUND Epidural analgesia is the most effective analgesic method during labor.Butorphanol administered epidurally has been shown to be a successful analgesic method during labor.However,no comprehensive study has ...BACKGROUND Epidural analgesia is the most effective analgesic method during labor.Butorphanol administered epidurally has been shown to be a successful analgesic method during labor.However,no comprehensive study has examined the safety and efficacy of using butorphanol as an epidural analgesic during labor.AIM To assess butorphanol's safety and efficacy for epidural labor analgesia.METHODS The PubMed,Cochrane Library,EMBASE,Web of Science,China National Knowledge Infrastructure,and Google Scholar databases will be searched from inception.Other types of literature,such as conference abstracts and references to pertinent reviews,will also be reviewed.We will include randomized controlled trials comparing butorphanol with other opioids combined with local anesthetics for epidural analgesia during labor.There will be no language restrictions.The primary outcomes will include the visual analog scale score for the first stage of labor,fetal effects,and Apgar score.Two independent reviewers will evaluate the full texts,extract data,and assess the risk of bias.Publication bias will be evaluated using Egger's or Begg's tests as well as visual analysis of a funnel plot,and heterogeneity will be evaluated using the Cochran Q test,P values,and I2 values.Meta-analysis,subgroup analysis,and sensitivity analysis will be performed using RevMan software version 5.4.This protocol was developed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)Protocols statement,and the PRISMA statement will be used for the systematic review.RESULTS This study provides reliable information regarding the safety and efficacy of using butorphanol as an epidural analgesic during labor.CONCLUSION To support clinical practice and development,this study provides evidence-based findings regarding the safety and efficacy of using butorphanol as an epidural analgesic during labor.展开更多
Keratoconus is an ectatic condition characterized by gradual corneal thinning,corneal protrusion,progressive irregular astigmatism,corneal fibrosis,and visual impairment.The therapeutic options regarding improvement o...Keratoconus is an ectatic condition characterized by gradual corneal thinning,corneal protrusion,progressive irregular astigmatism,corneal fibrosis,and visual impairment.The therapeutic options regarding improvement of visual function include glasses or soft contact lenses correction for initial stages,gas-permeable rigid contact lenses,scleral lenses,implantation of intrastromal corneal ring or corneal transplants for most advanced stages.In keratoconus cases showing disease progression corneal collagen crosslinking(CXL)has been proven to be an effective,minimally invasive and safe procedure.CXL consists of a photochemical reaction of corneal collagen by riboflavin stimulation with ultraviolet A radiation,resulting in stromal crosslinks formation.The aim of this review is to carry out an examination of CXL methods based on theoretical basis and mathematical models,from the original Dresden protocol to the most recent developments in the technique,reporting the changes proposed in the last 15y and examining the advantages and disadvantages of the various treatment protocols.Finally,the limits of non-standardized methods and the perspectives offered by a customization of the treatment are highlighted.展开更多
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect...Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.展开更多
The elliptic azimuthal anisotropy coefficient(v_(2))of the identified particles at midrapidity(|η|<0.8)was investigated in p-Pb collisions at√s_(NN)=5.02 TeV using a multi-phase transport model(AMPT).The calculat...The elliptic azimuthal anisotropy coefficient(v_(2))of the identified particles at midrapidity(|η|<0.8)was investigated in p-Pb collisions at√s_(NN)=5.02 TeV using a multi-phase transport model(AMPT).The calculations of differential v_(2)based on the advanced flow extraction method of light flavor hadrons(pions,kaons,protons,andΛ)in small collision systems were extended to a wider transverse momentum(p_(T))range of up to 8 GeV/c for the first time.The string-melting version of the AMPT model provides a good description of the measured p_(T)-differential v_(2)of the mesons but exhibits a slight deviation from the baryon v_(2).In addition,we observed the features of mass ordering at low p_(T)and the approximate number-of-constituentquark(NCQ)scaling at intermediate p_(T).Moreover,we demonstrate that hadronic rescattering does not have a significant impact on v_(2)in p-Pb collisions for different centrality selections,whereas partonic scattering dominates in generating the elliptic anisotropy of the final particles.This study provides further insight into the origin of collective-like behavior in small collision systems and has referential value for future measurements of azimuthal anisotropy.展开更多
Verticillium wilt(VW),induced by the soil-borne fungus Verticillium dahliae(Vd),poses a substantial threat to a diverse array of plant species.Employing molecular breeding technology for the development of cotton vari...Verticillium wilt(VW),induced by the soil-borne fungus Verticillium dahliae(Vd),poses a substantial threat to a diverse array of plant species.Employing molecular breeding technology for the development of cotton varieties with heightened resistance to VW stands out as one of the most efficacious protective measures.In this study,we successfully generated two stable transgenic lines of cotton(Gossypium hirsutum L.),VdThitRNAi-1 and VdThit-RNAi-2,using host-induced gene silencing(HIGS)technology to introduce double-stranded RNA(dsRNA)targeting the thiamine transporter protein gene(VdThit).Southern blot analysis confirmed the presence of a single-copy insertion in each line.Microscopic examination showed marked reductions in the colonization and spread of Vd-mCherry in the roots of VdThit-RNAi cotton compared to wild type(WT).The corresponding disease index and fungal biomass of VdThit-RNAi-1/2 also exhibited significant reductions.Real-time quantitative PCR(qRT-PCR)analysis demonstrated a substantial inhibition of VdThit expression following prolonged inoculation of VdThit-RNAi cotton.Small RNA sequencing(sRNA-Seq)analysis revealed the generation of a substantial number of VdThit-specific siRNAs in the VdThit-RNAi transgenic lines.Additionally,the silencing of VdThit by the siVdThit produced by VdThit-RNAi-1/2 resulted in the elevated expression of multiple genes involved in the thiamine biosynthesis pathway in Vd.Under field conditions,VdThit-RNAi transgenic cotton exhibited significantly enhanced disease resistance and yield compared with WT.In summary,our findings underscore the efficacy of HIGS targeting VdThit in restraining the infection and spread of Vd in cotton,thereby potentially enabling the development of cotton breeding as a promising strategy for managing VW.展开更多
In plants,the lysine and histidine transporter(LHT)family represent a class of proteins that mediate the uptake,translocation,and utilization of amino acids.The tea plant(Camellia sinensis)is a perennial evergreen wit...In plants,the lysine and histidine transporter(LHT)family represent a class of proteins that mediate the uptake,translocation,and utilization of amino acids.The tea plant(Camellia sinensis)is a perennial evergreen with a relatively high level of amino acids.However,systematic identification and molecular characterization of the LHT gene family has rarely been reported in tea plants.In this study,22 CsLHTs were identified from the‘Shuchazao’genome and classified into two groups.The modeled three-dimensional structure and the conserved domains presented a high similarity among the LHTs proteins.Moreover,it was predicted that a few genes were conserved through the analysis of the physiochemical characters,structures and cis-elements in promoters.The expression patterns in tea plants revealed that CsLHT7 was mainly expressed in the roots,and CsLHT4 and CsLHT11 exhibited relatively high expression in both the roots and leaves.Moreover,the expression of all three genes could be induced by organic nitrogen.Additionally,heterogeneous expression of CsLHT4,CsLHT7 and CsLHT11 in Arabidopsis thaliana decreased the aerial parts biomass compared with that in WT plants while significantly increased the rosette biomass only for CsLHT11transgenic plants versus WT plants.Overall,our results provide fundamental information about CsLHTs and potential genes in N utilization for further analysis in tea plants.展开更多
Glaucoma,characterized by a degenerative loss of retinal ganglion cells,is the second leading cause of blindness worldwide.There is currently no cure for vision loss in glaucoma because retinal ganglion cells do not r...Glaucoma,characterized by a degenerative loss of retinal ganglion cells,is the second leading cause of blindness worldwide.There is currently no cure for vision loss in glaucoma because retinal ganglion cells do not regenerate and are not replaced after injury.Human stem cell-derived retinal ganglion cell transplant is a potential therapeutic strategy for retinal ganglion cell degenerative diseases.In this review,we first discuss a 2D protocol for retinal ganglion cell differentiation from human stem cell culture,including a rapid protocol that can generate retinal ganglion cells in less than two weeks and focus on their transplantation outcomes.Next,we discuss using 3D retinal organoids for retinal ganglion cell transplantation,comparing cell suspensions and clusters.This review provides insight into current knowledge on human stem cell-derived retinal ganglion cell differentiation and transplantation,with an impact on the field of regenerative medicine and especially retinal ganglion cell degenerative diseases such as glaucoma and other optic neuropathies.展开更多
Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of ...Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of underground nuclear explosions(UNEs).However,the migration of signature radionuclide gases between the nuclear cavity and surface is not well understood because complex processes are involved,including the generation of complex fracture networks,reactivation of natural fractures and faults,and thermo-hydro-mechanical-chemical(THMC)coupling of radionuclide gas transport in the subsurface.In this study,we provide an experimental investigation of hydro-mechanical(HM)coupling among gas flow,stress states,rock deformation,and rock damage using a unique multi-physics triaxial direct shear rock testing system.The testing system also features redundant gas pressure and flow rate measurements,well suited for parameter uncertainty quantification.Using porous tuff and tight granite samples that are relevant to historic UNE tests,we measured the Biot effective stress coefficient,rock matrix gas permeability,and fracture gas permeability at a range of pore pressure and stress conditions.The Biot effective stress coefficient varies from 0.69 to 1 for the tuff,whose porosity averages 35.3%±0.7%,while this coefficient varies from 0.51 to 0.78 for the tight granite(porosity<1%,perhaps an underestimate).Matrix gas permeability is strongly correlated to effective stress for the granite,but not for the porous tuff.Our experiments reveal the following key engineering implications on transport of radionuclide gases post a UNE event:(1)The porous tuff shows apparent fracture dilation or compression upon stress changes,which does not necessarily change the gas permeability;(2)The granite fracture permeability shows strong stress sensitivity and is positively related to shear displacement;and(3)Hydromechanical coupling among stress states,rock damage,and gas flow appears to be stronger in tight granite than in porous tuff.展开更多
Plasma membrane intrinsic proteins(PIPs)are conserved plant aquaporins that transport small molecules across the plasma membrane to trigger instant stress responses and maintain cellular homeostasis under biotic and a...Plasma membrane intrinsic proteins(PIPs)are conserved plant aquaporins that transport small molecules across the plasma membrane to trigger instant stress responses and maintain cellular homeostasis under biotic and abiotic stress.To elucidate their roles in plant immunity to pathogen attack,we characterized the expression patterns,subcellular localizations,and H_(2)O_(2)-transport ability of 11 OsPIPs in rice(Oryza sativa),and identified OsPIP2;6 as necessary for rice disease resistance.OsPIP2;6 resides on the plasma membrane and facilitates cytoplasmic import of the immune signaling molecule H_(2)O_(2).Knockout of OsPIP2;6 increases rice susceptibility to Magnaporthe oryzae,indicating a positive function in plant immunity.OsPIP2;6 interacts with OsPIP2;2,which has been reported to increase rice resistance to pathogens via H_(2)O_(2)transport.Our findings suggest that OsPIP2;6 cooperates with OsPIP2;2 as a defense signal transporter complex during plant–pathogen interaction.展开更多
BACKGROUND Sodium-dependent glucose transporter 2 inhibitors(SGLT2i)have shown efficacy in reducing heart failure(HF)burden in a very heterogeneous groups of patients,raising doubts about some contemporary assumptions...BACKGROUND Sodium-dependent glucose transporter 2 inhibitors(SGLT2i)have shown efficacy in reducing heart failure(HF)burden in a very heterogeneous groups of patients,raising doubts about some contemporary assumptions of their mechanism of action.We previously published a prospective observational study that evaluated mechanisms of action of SGLT2i in patients with type 2 diabetes who were in HF stages A and B on dual hypoglycemic therapy.Two groups of patients were included in the study:the ones receiving SGLT2i as an add-on agent to metformin and the others on dipeptidyl peptidase-4 inhibitors as an add-on to metformin due to suboptimal glycemic control.AIM To evaluate the outcomes regarding natriuretic peptide,oxidative stress,inflammation,blood pressure,heart rate,cardiac function,and body weight.METHODS The study outcomes were examined by dividing each treatment arm into two subgroups according to baseline parameters of global longitudinal strain(GLS),N-terminal pro-brain natriuretic peptide,myeloperoxidase(MPO),high-sensitivity C-reactive protein(hsCRP),and systolic and diastolic blood pressure.To evaluate the possible predictors of observed changes in the SGLT2i arm during follow-up,a rise in stroke volume index,body mass index(BMI)decrease,and lack of heart rate increase,linear regression analysis was performed.RESULTS There was a greater reduction of MPO,hsCRP,GLS,and blood pressure in the groups with higher baseline values of mentioned parameters irrespective of the therapeutic arm after 6 months of follow-up.Significant independent predictors of heart rate decrease were a reduction in early mitral inflow velocity to early diastolic mitral annular velocity at the interventricular septal annulus ratio and BMI,while the predictor of stroke volume index increase was SGLT2i therapy itself.CONCLUSION SGLT2i affect body composition,reduce cardiac load,improve diastolic/systolic function,and attenuate the sympathetic response.Glycemic control contributes to the improvement of heart function,blood pressure control,oxidative stress,and reduction in inflammation.展开更多
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud...As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.展开更多
The inward particle transport is associated with the formation of peaked density profiles,which contributes to improve the fusion rate and the realization of steady-state discharge.The active control of inward particl...The inward particle transport is associated with the formation of peaked density profiles,which contributes to improve the fusion rate and the realization of steady-state discharge.The active control of inward particle transport is considered as one of the most critical issues of magnetic confinement fusion.Recently,it is realized preliminarily by adding a biased endplate in the Peking University Plasma Test(PPT)device.The results reveal that the inward particle flux increases with the bias voltage of the endplate.It is also found that the profile of radial electric field(Er)shear is flattened by the increased bias voltage.Radial velocity fluctuations affect the inward particle more than density fluctuations,and the frequency of the dominant mode driving inward particle flux increases with the biased voltage applied to the endplate.The experimental results in the PPT device provide a method to actively control the inward particle flux using a biased endplate and enrich the understanding of the relationship between E_(r)×B shear and turbulence transport.展开更多
At the EAST tokamak, the ion temperature(T_(i)) is observed to be clamped around 1.25 keV in electron cyclotron resonance(ECR)-heated plasmas, even at core electron temperatures up to 10 keV(depending on the ECR heati...At the EAST tokamak, the ion temperature(T_(i)) is observed to be clamped around 1.25 keV in electron cyclotron resonance(ECR)-heated plasmas, even at core electron temperatures up to 10 keV(depending on the ECR heating power and the plasma density). This clamping results from the lack of direct ion heating and high levels of turbulence-driven transport. Turbulent transport analysis shows that trapped electron mode and electron temperature gradient-driven modes are the most unstable modes in the core of ECR-heated H-mode plasmas. Nevertheless, recently it was found that the T_(i)/T_(e)ratio can increase further with the fraction of the neutral beam injection(NBI) power, which leads to a higher core ion temperature(Ti0). In NBI heating-dominant H-mode plasmas, the ion temperature gradient-driven modes become the most unstable modes.Furthermore, a strong and broad internal transport barrier(ITB) can form at the plasma core in high-power NBI-heated H-mode plasmas when the T_(i)/T_(e)ratio approaches ~1, which results in steep core Teand Tiprofiles, as well as a peaked neprofile. Power balance analysis shows a weaker Teprofile stiffness after the formation of ITBs in the core plasma region, where Ticlamping is broken,and the core Tican increase further above 2 keV, which is 80% higher than the value of Ticlamping in ECR-heated plasmas. This finding proposes a possible solution to the problem of Ticlamping on EAST and demonstrates an advanced operational regime with the formation of a strong and broad ITB for future fusion plasmas dominated by electron heating.展开更多
Background: Studies have shown a strong correlation between the growth of E2 in serum and estrone-3-glucuronide (E1-3G) in urine during ovarian stimulation. Thus, we developed theoretical models for using urinary E1-3...Background: Studies have shown a strong correlation between the growth of E2 in serum and estrone-3-glucuronide (E1-3G) in urine during ovarian stimulation. Thus, we developed theoretical models for using urinary E1-3G in ovarian stimulation and focused on their experimental verification and analysis. Methods: A prospective, observational pilot study was conducted involving 54 patients who underwent 54 cycles of ovarian stimulation. The goal was to establish the growth rate of urinary E1-3G during the course of stimulation and to determine the daily upper and lower limits of growth rates at which stimulation is appropriate and safe. Controlled ovarian stimulation was performed using two different stimulation protocols—an antagonist protocol in 25 cases and a progestin-primed ovarian stimulation protocol (PPOS) in 29 cases, with fixed doses of gonadotropins. From the second day of stimulation, patients self-measured their daily urine E1-3G levels at home using a portable analyzer. In parallel, a standard ultrasound follow-up protocol accompanied by a determination of E2, LH, and P levels was applied to optimally control stimulation. Results: The average daily growth rates in both groups were about 50%. The daily increase in E1-3G for the antagonist protocol ranged from 14% to 79%, while they were 28% to 79% for the PPOS protocol. Conclusion: This is the first study to analyze the dynamics of E1-3G in two different protocols and to estimate the limits of its increase during the entire course of the stimulation. The results confirm our theoretical model for the viability of using urinary E1-3G for monitoring ovarian stimulation.展开更多
The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of mana...The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.展开更多
Cookies are considered a fundamental means of web application services for authenticating various Hypertext Transfer Protocol(HTTP)requests andmaintains the states of clients’information over the Internet.HTTP cookie...Cookies are considered a fundamental means of web application services for authenticating various Hypertext Transfer Protocol(HTTP)requests andmaintains the states of clients’information over the Internet.HTTP cookies are exploited to carry client patterns observed by a website.These client patterns facilitate the particular client’s future visit to the corresponding website.However,security and privacy are the primary concerns owing to the value of information over public channels and the storage of client information on the browser.Several protocols have been introduced that maintain HTTP cookies,but many of those fail to achieve the required security,or require a lot of resource overheads.In this article,we have introduced a lightweight Elliptic Curve Cryptographic(ECC)based protocol for authenticating client and server transactions to maintain the privacy and security of HTTP cookies.Our proposed protocol uses a secret key embedded within a cookie.The proposed protocol ismore efficient and lightweight than related protocols because of its reduced computation,storage,and communication costs.Moreover,the analysis presented in this paper confirms that proposed protocol resists various known attacks.展开更多
With the depletion of fossil fuels and the demand for high-performance energy storage devices,solidstate lithium metal batteries have received widespread attention due to their high energy density and safety advantage...With the depletion of fossil fuels and the demand for high-performance energy storage devices,solidstate lithium metal batteries have received widespread attention due to their high energy density and safety advantages.Among them,the earliest developed organic solid-state polymer electrolyte has a promising future due to its advantages such as good mechanical flexibility,but its poor ion transport performance dramatically limits its performance improvement.Therefore,single-ion conducting polymer electrolytes(SICPEs)with high lithium-ion transport number,capable of improving the concentration polarization and inhibiting the growth of lithium dendrites,have been proposed,which provide a new direction for the further development of high-performance organic polymer electrolytes.In view of this,lithium ions transport mechanisms and design principles in SICPEs are summarized and discussed in this paper.The modification principles currently used can be categorized into the following three types:enhancement of lithium salt anion-polymer interactions,weakening of lithium salt anion-cation interactions,and modulation of lithium ion-polymer interactions.In addition,the advances in single-ion conductors of conventional and novel polymer electrolytes are summarized,and several typical highperformance single-ion conductors are enumerated and analyzed in what way they improve ionic conductivity,lithium ions mobility,and the ability to inhibit lithium dendrites.Finally,the advantages and design methodology of SICPEs are summarized again and the future directions are outlined.展开更多
Forecasting travel demand requires a grasp of individual decision-making behavior.However,transport mode choice(TMC)is determined by personal and contextual factors that vary from person to person.Numerous characteris...Forecasting travel demand requires a grasp of individual decision-making behavior.However,transport mode choice(TMC)is determined by personal and contextual factors that vary from person to person.Numerous characteristics have a substantial impact on travel behavior(TB),which makes it important to take into account while studying transport options.Traditional statistical techniques frequently presume linear correlations,but real-world data rarely follows these presumptions,which may make it harder to grasp the complex interactions.Thorough systematic review was conducted to examine how machine learning(ML)approaches might successfully capture nonlinear correlations that conventional methods may ignore to overcome such challenges.An in-depth analysis of discrete choice models(DCM)and several ML algorithms,datasets,model validation strategies,and tuning techniques employed in previous research is carried out in the present study.Besides,the current review also summarizes DCM and ML models to predict TMC and recognize the determinants of TB in an urban area for different transport modes.The two primary goals of our study are to establish the present conceptual frameworks for the factors influencing the TMC for daily activities and to pinpoint methodological issues and limitations in previous research.With a total of 39 studies,our findings shed important light on the significance of considering factors that influence the TMC.The adjusted kernel algorithms and hyperparameter-optimized ML algorithms outperform the typical ML algorithms.RF(random forest),SVM(support vector machine),ANN(artificial neural network),and interpretable ML algorithms are the most widely used ML algorithms for the prediction of TMC where RF achieved an R2 of 0.95 and SVM achieved an accuracy of 93.18%;however,the adjusted kernel enhanced the accuracy of SVM 99.81%which shows that the interpretable algorithms outperformed the typical algorithms.The sensitivity analysis indicates that the most significant parameters influencing TMC are the age,total trip time,and the number of drivers.展开更多
This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc...This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc On-Demand Distance Vector(AODV),Dynamic Source Routing(DSR),and Zone Routing Protocol(ZRP).In this paper,the evaluation will be carried out using complete sets of statistical tests such as Kruskal-Wallis,Mann-Whitney,and Friedman.It articulates a systematic evaluation of how the performance of the previous protocols varies with the number of nodes and the mobility patterns.The study is premised upon the Quality of Service(QoS)metrics of throughput,packet delivery ratio,and end-to-end delay to gain an adequate understanding of the operational efficiency of each protocol under different network scenarios.The findings explained significant differences in the performance of different routing protocols;as a result,decisions for the selection and optimization of routing protocols can be taken effectively according to different network requirements.This paper is a step forward in the general understanding of the routing dynamics of MANETs and contributes significantly to the strategic deployment of robust and efficient network infrastructures.展开更多
This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consens...This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consensus protocol is designed by using delayed and memorized state information.Under the proportional-integral consensus protocol,the consensus problem of the multi-agent system is transformed into the problem of asymptotic stability of the corresponding linear time-invariant time-delay system.Note that the location of the eigenvalues of the corresponding characteristic function of the linear time-invariant time-delay system not only determines the stability of the system,but also plays a critical role in the dynamic performance of the system.In this paper,based on recent results on the distribution of roots of quasi-polynomials,several necessary conditions for Hurwitz stability for a class of quasi-polynomials are first derived.Then allowable regions of consensus protocol parameters are estimated.Some necessary and sufficient conditions for determining effective protocol parameters are provided.The designed protocol can achieve consensus and improve the dynamic performance of the second-order multi-agent system.Moreover,the effects of delays on consensus of systems of harmonic oscillators/double integrators under proportional-integral consensus protocols are investigated.Furthermore,some results on proportional-integral consensus are derived for a class of high-order linear time-invariant multi-agent systems.展开更多
文摘BACKGROUND Epidural analgesia is the most effective analgesic method during labor.Butorphanol administered epidurally has been shown to be a successful analgesic method during labor.However,no comprehensive study has examined the safety and efficacy of using butorphanol as an epidural analgesic during labor.AIM To assess butorphanol's safety and efficacy for epidural labor analgesia.METHODS The PubMed,Cochrane Library,EMBASE,Web of Science,China National Knowledge Infrastructure,and Google Scholar databases will be searched from inception.Other types of literature,such as conference abstracts and references to pertinent reviews,will also be reviewed.We will include randomized controlled trials comparing butorphanol with other opioids combined with local anesthetics for epidural analgesia during labor.There will be no language restrictions.The primary outcomes will include the visual analog scale score for the first stage of labor,fetal effects,and Apgar score.Two independent reviewers will evaluate the full texts,extract data,and assess the risk of bias.Publication bias will be evaluated using Egger's or Begg's tests as well as visual analysis of a funnel plot,and heterogeneity will be evaluated using the Cochran Q test,P values,and I2 values.Meta-analysis,subgroup analysis,and sensitivity analysis will be performed using RevMan software version 5.4.This protocol was developed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)Protocols statement,and the PRISMA statement will be used for the systematic review.RESULTS This study provides reliable information regarding the safety and efficacy of using butorphanol as an epidural analgesic during labor.CONCLUSION To support clinical practice and development,this study provides evidence-based findings regarding the safety and efficacy of using butorphanol as an epidural analgesic during labor.
文摘Keratoconus is an ectatic condition characterized by gradual corneal thinning,corneal protrusion,progressive irregular astigmatism,corneal fibrosis,and visual impairment.The therapeutic options regarding improvement of visual function include glasses or soft contact lenses correction for initial stages,gas-permeable rigid contact lenses,scleral lenses,implantation of intrastromal corneal ring or corneal transplants for most advanced stages.In keratoconus cases showing disease progression corneal collagen crosslinking(CXL)has been proven to be an effective,minimally invasive and safe procedure.CXL consists of a photochemical reaction of corneal collagen by riboflavin stimulation with ultraviolet A radiation,resulting in stromal crosslinks formation.The aim of this review is to carry out an examination of CXL methods based on theoretical basis and mathematical models,from the original Dresden protocol to the most recent developments in the technique,reporting the changes proposed in the last 15y and examining the advantages and disadvantages of the various treatment protocols.Finally,the limits of non-standardized methods and the perspectives offered by a customization of the treatment are highlighted.
文摘Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.
基金This work was supported by the Key Laboratory of Quark and Lepton Physics(MOE)in Central China Normal University(Nos.QLPL2022P01,QLPL202106)Natural Science Foundation of Hubei Provincial Education Department(No.Q20131603)+2 种基金National key research,development program of China(No.2018YFE0104700)National Natural Science Foundation of China(No.12175085)Fundamental research funds for the Central Universities(No.CCNU220N003).
文摘The elliptic azimuthal anisotropy coefficient(v_(2))of the identified particles at midrapidity(|η|<0.8)was investigated in p-Pb collisions at√s_(NN)=5.02 TeV using a multi-phase transport model(AMPT).The calculations of differential v_(2)based on the advanced flow extraction method of light flavor hadrons(pions,kaons,protons,andΛ)in small collision systems were extended to a wider transverse momentum(p_(T))range of up to 8 GeV/c for the first time.The string-melting version of the AMPT model provides a good description of the measured p_(T)-differential v_(2)of the mesons but exhibits a slight deviation from the baryon v_(2).In addition,we observed the features of mass ordering at low p_(T)and the approximate number-of-constituentquark(NCQ)scaling at intermediate p_(T).Moreover,we demonstrate that hadronic rescattering does not have a significant impact on v_(2)in p-Pb collisions for different centrality selections,whereas partonic scattering dominates in generating the elliptic anisotropy of the final particles.This study provides further insight into the origin of collective-like behavior in small collision systems and has referential value for future measurements of azimuthal anisotropy.
基金supported by the National Key Research and Development Program of China(2022YFD1200300)the National Natural Science Foundation of China(32072376 and 32372515)+3 种基金Winall Hi-tech Seed Co.,Ltd.,China(GMLM2023)the Nanfan Special Project of Chinese Academy of Agricultural Sciences(CAAS)(ZDXM2303 and YBXM2415)the Natural Science Foundation of Hebei Province,China(C2022204205)the Agricultural Science and Technology Innovation Program of CAAS。
文摘Verticillium wilt(VW),induced by the soil-borne fungus Verticillium dahliae(Vd),poses a substantial threat to a diverse array of plant species.Employing molecular breeding technology for the development of cotton varieties with heightened resistance to VW stands out as one of the most efficacious protective measures.In this study,we successfully generated two stable transgenic lines of cotton(Gossypium hirsutum L.),VdThitRNAi-1 and VdThit-RNAi-2,using host-induced gene silencing(HIGS)technology to introduce double-stranded RNA(dsRNA)targeting the thiamine transporter protein gene(VdThit).Southern blot analysis confirmed the presence of a single-copy insertion in each line.Microscopic examination showed marked reductions in the colonization and spread of Vd-mCherry in the roots of VdThit-RNAi cotton compared to wild type(WT).The corresponding disease index and fungal biomass of VdThit-RNAi-1/2 also exhibited significant reductions.Real-time quantitative PCR(qRT-PCR)analysis demonstrated a substantial inhibition of VdThit expression following prolonged inoculation of VdThit-RNAi cotton.Small RNA sequencing(sRNA-Seq)analysis revealed the generation of a substantial number of VdThit-specific siRNAs in the VdThit-RNAi transgenic lines.Additionally,the silencing of VdThit by the siVdThit produced by VdThit-RNAi-1/2 resulted in the elevated expression of multiple genes involved in the thiamine biosynthesis pathway in Vd.Under field conditions,VdThit-RNAi transgenic cotton exhibited significantly enhanced disease resistance and yield compared with WT.In summary,our findings underscore the efficacy of HIGS targeting VdThit in restraining the infection and spread of Vd in cotton,thereby potentially enabling the development of cotton breeding as a promising strategy for managing VW.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFD1000600)the National Natural Science Foundation of China(Grant No.32070376)。
文摘In plants,the lysine and histidine transporter(LHT)family represent a class of proteins that mediate the uptake,translocation,and utilization of amino acids.The tea plant(Camellia sinensis)is a perennial evergreen with a relatively high level of amino acids.However,systematic identification and molecular characterization of the LHT gene family has rarely been reported in tea plants.In this study,22 CsLHTs were identified from the‘Shuchazao’genome and classified into two groups.The modeled three-dimensional structure and the conserved domains presented a high similarity among the LHTs proteins.Moreover,it was predicted that a few genes were conserved through the analysis of the physiochemical characters,structures and cis-elements in promoters.The expression patterns in tea plants revealed that CsLHT7 was mainly expressed in the roots,and CsLHT4 and CsLHT11 exhibited relatively high expression in both the roots and leaves.Moreover,the expression of all three genes could be induced by organic nitrogen.Additionally,heterogeneous expression of CsLHT4,CsLHT7 and CsLHT11 in Arabidopsis thaliana decreased the aerial parts biomass compared with that in WT plants while significantly increased the rosette biomass only for CsLHT11transgenic plants versus WT plants.Overall,our results provide fundamental information about CsLHTs and potential genes in N utilization for further analysis in tea plants.
基金supported by NIH Core Grants P30-EY008098the Eye and Ear Foundation of Pittsburghunrestricted grants from Research to Prevent Blindness,New York,NY,USA(to KCC)。
文摘Glaucoma,characterized by a degenerative loss of retinal ganglion cells,is the second leading cause of blindness worldwide.There is currently no cure for vision loss in glaucoma because retinal ganglion cells do not regenerate and are not replaced after injury.Human stem cell-derived retinal ganglion cell transplant is a potential therapeutic strategy for retinal ganglion cell degenerative diseases.In this review,we first discuss a 2D protocol for retinal ganglion cell differentiation from human stem cell culture,including a rapid protocol that can generate retinal ganglion cells in less than two weeks and focus on their transplantation outcomes.Next,we discuss using 3D retinal organoids for retinal ganglion cell transplantation,comparing cell suspensions and clusters.This review provides insight into current knowledge on human stem cell-derived retinal ganglion cell differentiation and transplantation,with an impact on the field of regenerative medicine and especially retinal ganglion cell degenerative diseases such as glaucoma and other optic neuropathies.
基金supported by the Laboratory Directed Research&Development(LDRD)program at the Los Alamos National Laboratory(LANL)(Grant No.20220019DR).
文摘Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of underground nuclear explosions(UNEs).However,the migration of signature radionuclide gases between the nuclear cavity and surface is not well understood because complex processes are involved,including the generation of complex fracture networks,reactivation of natural fractures and faults,and thermo-hydro-mechanical-chemical(THMC)coupling of radionuclide gas transport in the subsurface.In this study,we provide an experimental investigation of hydro-mechanical(HM)coupling among gas flow,stress states,rock deformation,and rock damage using a unique multi-physics triaxial direct shear rock testing system.The testing system also features redundant gas pressure and flow rate measurements,well suited for parameter uncertainty quantification.Using porous tuff and tight granite samples that are relevant to historic UNE tests,we measured the Biot effective stress coefficient,rock matrix gas permeability,and fracture gas permeability at a range of pore pressure and stress conditions.The Biot effective stress coefficient varies from 0.69 to 1 for the tuff,whose porosity averages 35.3%±0.7%,while this coefficient varies from 0.51 to 0.78 for the tight granite(porosity<1%,perhaps an underestimate).Matrix gas permeability is strongly correlated to effective stress for the granite,but not for the porous tuff.Our experiments reveal the following key engineering implications on transport of radionuclide gases post a UNE event:(1)The porous tuff shows apparent fracture dilation or compression upon stress changes,which does not necessarily change the gas permeability;(2)The granite fracture permeability shows strong stress sensitivity and is positively related to shear displacement;and(3)Hydromechanical coupling among stress states,rock damage,and gas flow appears to be stronger in tight granite than in porous tuff.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2020A1515111101,2022A1515110431).
文摘Plasma membrane intrinsic proteins(PIPs)are conserved plant aquaporins that transport small molecules across the plasma membrane to trigger instant stress responses and maintain cellular homeostasis under biotic and abiotic stress.To elucidate their roles in plant immunity to pathogen attack,we characterized the expression patterns,subcellular localizations,and H_(2)O_(2)-transport ability of 11 OsPIPs in rice(Oryza sativa),and identified OsPIP2;6 as necessary for rice disease resistance.OsPIP2;6 resides on the plasma membrane and facilitates cytoplasmic import of the immune signaling molecule H_(2)O_(2).Knockout of OsPIP2;6 increases rice susceptibility to Magnaporthe oryzae,indicating a positive function in plant immunity.OsPIP2;6 interacts with OsPIP2;2,which has been reported to increase rice resistance to pathogens via H_(2)O_(2)transport.Our findings suggest that OsPIP2;6 cooperates with OsPIP2;2 as a defense signal transporter complex during plant–pathogen interaction.
文摘BACKGROUND Sodium-dependent glucose transporter 2 inhibitors(SGLT2i)have shown efficacy in reducing heart failure(HF)burden in a very heterogeneous groups of patients,raising doubts about some contemporary assumptions of their mechanism of action.We previously published a prospective observational study that evaluated mechanisms of action of SGLT2i in patients with type 2 diabetes who were in HF stages A and B on dual hypoglycemic therapy.Two groups of patients were included in the study:the ones receiving SGLT2i as an add-on agent to metformin and the others on dipeptidyl peptidase-4 inhibitors as an add-on to metformin due to suboptimal glycemic control.AIM To evaluate the outcomes regarding natriuretic peptide,oxidative stress,inflammation,blood pressure,heart rate,cardiac function,and body weight.METHODS The study outcomes were examined by dividing each treatment arm into two subgroups according to baseline parameters of global longitudinal strain(GLS),N-terminal pro-brain natriuretic peptide,myeloperoxidase(MPO),high-sensitivity C-reactive protein(hsCRP),and systolic and diastolic blood pressure.To evaluate the possible predictors of observed changes in the SGLT2i arm during follow-up,a rise in stroke volume index,body mass index(BMI)decrease,and lack of heart rate increase,linear regression analysis was performed.RESULTS There was a greater reduction of MPO,hsCRP,GLS,and blood pressure in the groups with higher baseline values of mentioned parameters irrespective of the therapeutic arm after 6 months of follow-up.Significant independent predictors of heart rate decrease were a reduction in early mitral inflow velocity to early diastolic mitral annular velocity at the interventricular septal annulus ratio and BMI,while the predictor of stroke volume index increase was SGLT2i therapy itself.CONCLUSION SGLT2i affect body composition,reduce cardiac load,improve diastolic/systolic function,and attenuate the sympathetic response.Glycemic control contributes to the improvement of heart function,blood pressure control,oxidative stress,and reduction in inflammation.
基金This work was financially supported by the National Natural Science Foundation of China(52074089 and 52104064)Natural Science Foundation of Heilongjiang Province of China(LH2019E019).
文摘As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.
基金supported by the National MCF Energy R&D Program of China(No.2018YFE0303100)National Natural Science Foundation of China(No.11975038)。
文摘The inward particle transport is associated with the formation of peaked density profiles,which contributes to improve the fusion rate and the realization of steady-state discharge.The active control of inward particle transport is considered as one of the most critical issues of magnetic confinement fusion.Recently,it is realized preliminarily by adding a biased endplate in the Peking University Plasma Test(PPT)device.The results reveal that the inward particle flux increases with the bias voltage of the endplate.It is also found that the profile of radial electric field(Er)shear is flattened by the increased bias voltage.Radial velocity fluctuations affect the inward particle more than density fluctuations,and the frequency of the dominant mode driving inward particle flux increases with the biased voltage applied to the endplate.The experimental results in the PPT device provide a method to actively control the inward particle flux using a biased endplate and enrich the understanding of the relationship between E_(r)×B shear and turbulence transport.
基金supported by National Natural Science Foundation of China(No.12135015)the Users with Excellence Program of Hefei Science Center,CAS(No.2021HSCUE012)+3 种基金the National Key R&D Program of China(No.2022Y FE03010003)the Major Science and Technology Infrastructure Maintenance and Reconstruction Projects of the Chinese Academy of Sciences 2021the Special Funds for Improving Conditions for Scientific Research in National Scientific Institutions 2022the China Scholarship Council。
文摘At the EAST tokamak, the ion temperature(T_(i)) is observed to be clamped around 1.25 keV in electron cyclotron resonance(ECR)-heated plasmas, even at core electron temperatures up to 10 keV(depending on the ECR heating power and the plasma density). This clamping results from the lack of direct ion heating and high levels of turbulence-driven transport. Turbulent transport analysis shows that trapped electron mode and electron temperature gradient-driven modes are the most unstable modes in the core of ECR-heated H-mode plasmas. Nevertheless, recently it was found that the T_(i)/T_(e)ratio can increase further with the fraction of the neutral beam injection(NBI) power, which leads to a higher core ion temperature(Ti0). In NBI heating-dominant H-mode plasmas, the ion temperature gradient-driven modes become the most unstable modes.Furthermore, a strong and broad internal transport barrier(ITB) can form at the plasma core in high-power NBI-heated H-mode plasmas when the T_(i)/T_(e)ratio approaches ~1, which results in steep core Teand Tiprofiles, as well as a peaked neprofile. Power balance analysis shows a weaker Teprofile stiffness after the formation of ITBs in the core plasma region, where Ticlamping is broken,and the core Tican increase further above 2 keV, which is 80% higher than the value of Ticlamping in ECR-heated plasmas. This finding proposes a possible solution to the problem of Ticlamping on EAST and demonstrates an advanced operational regime with the formation of a strong and broad ITB for future fusion plasmas dominated by electron heating.
文摘Background: Studies have shown a strong correlation between the growth of E2 in serum and estrone-3-glucuronide (E1-3G) in urine during ovarian stimulation. Thus, we developed theoretical models for using urinary E1-3G in ovarian stimulation and focused on their experimental verification and analysis. Methods: A prospective, observational pilot study was conducted involving 54 patients who underwent 54 cycles of ovarian stimulation. The goal was to establish the growth rate of urinary E1-3G during the course of stimulation and to determine the daily upper and lower limits of growth rates at which stimulation is appropriate and safe. Controlled ovarian stimulation was performed using two different stimulation protocols—an antagonist protocol in 25 cases and a progestin-primed ovarian stimulation protocol (PPOS) in 29 cases, with fixed doses of gonadotropins. From the second day of stimulation, patients self-measured their daily urine E1-3G levels at home using a portable analyzer. In parallel, a standard ultrasound follow-up protocol accompanied by a determination of E2, LH, and P levels was applied to optimally control stimulation. Results: The average daily growth rates in both groups were about 50%. The daily increase in E1-3G for the antagonist protocol ranged from 14% to 79%, while they were 28% to 79% for the PPOS protocol. Conclusion: This is the first study to analyze the dynamics of E1-3G in two different protocols and to estimate the limits of its increase during the entire course of the stimulation. The results confirm our theoretical model for the viability of using urinary E1-3G for monitoring ovarian stimulation.
基金support of this work by National Key Research and Development Program of China(2019YFC19059003)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(23KJB430024)+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(2023ZB680)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)are gratefully acknowledged.
文摘The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.
基金support from Abu Dhabi University’s Office of Research and Sponsored Programs Grant Number:19300810.
文摘Cookies are considered a fundamental means of web application services for authenticating various Hypertext Transfer Protocol(HTTP)requests andmaintains the states of clients’information over the Internet.HTTP cookies are exploited to carry client patterns observed by a website.These client patterns facilitate the particular client’s future visit to the corresponding website.However,security and privacy are the primary concerns owing to the value of information over public channels and the storage of client information on the browser.Several protocols have been introduced that maintain HTTP cookies,but many of those fail to achieve the required security,or require a lot of resource overheads.In this article,we have introduced a lightweight Elliptic Curve Cryptographic(ECC)based protocol for authenticating client and server transactions to maintain the privacy and security of HTTP cookies.Our proposed protocol uses a secret key embedded within a cookie.The proposed protocol ismore efficient and lightweight than related protocols because of its reduced computation,storage,and communication costs.Moreover,the analysis presented in this paper confirms that proposed protocol resists various known attacks.
基金supported by the National Natural Science Foundation of China(51973157,51873152)Project funded by the China Postdoctoral Science Foundation(2022M711959)State Key Laboratory of Membrane and Membrane Separation,Tiangong University。
文摘With the depletion of fossil fuels and the demand for high-performance energy storage devices,solidstate lithium metal batteries have received widespread attention due to their high energy density and safety advantages.Among them,the earliest developed organic solid-state polymer electrolyte has a promising future due to its advantages such as good mechanical flexibility,but its poor ion transport performance dramatically limits its performance improvement.Therefore,single-ion conducting polymer electrolytes(SICPEs)with high lithium-ion transport number,capable of improving the concentration polarization and inhibiting the growth of lithium dendrites,have been proposed,which provide a new direction for the further development of high-performance organic polymer electrolytes.In view of this,lithium ions transport mechanisms and design principles in SICPEs are summarized and discussed in this paper.The modification principles currently used can be categorized into the following three types:enhancement of lithium salt anion-polymer interactions,weakening of lithium salt anion-cation interactions,and modulation of lithium ion-polymer interactions.In addition,the advances in single-ion conductors of conventional and novel polymer electrolytes are summarized,and several typical highperformance single-ion conductors are enumerated and analyzed in what way they improve ionic conductivity,lithium ions mobility,and the ability to inhibit lithium dendrites.Finally,the advantages and design methodology of SICPEs are summarized again and the future directions are outlined.
文摘Forecasting travel demand requires a grasp of individual decision-making behavior.However,transport mode choice(TMC)is determined by personal and contextual factors that vary from person to person.Numerous characteristics have a substantial impact on travel behavior(TB),which makes it important to take into account while studying transport options.Traditional statistical techniques frequently presume linear correlations,but real-world data rarely follows these presumptions,which may make it harder to grasp the complex interactions.Thorough systematic review was conducted to examine how machine learning(ML)approaches might successfully capture nonlinear correlations that conventional methods may ignore to overcome such challenges.An in-depth analysis of discrete choice models(DCM)and several ML algorithms,datasets,model validation strategies,and tuning techniques employed in previous research is carried out in the present study.Besides,the current review also summarizes DCM and ML models to predict TMC and recognize the determinants of TB in an urban area for different transport modes.The two primary goals of our study are to establish the present conceptual frameworks for the factors influencing the TMC for daily activities and to pinpoint methodological issues and limitations in previous research.With a total of 39 studies,our findings shed important light on the significance of considering factors that influence the TMC.The adjusted kernel algorithms and hyperparameter-optimized ML algorithms outperform the typical ML algorithms.RF(random forest),SVM(support vector machine),ANN(artificial neural network),and interpretable ML algorithms are the most widely used ML algorithms for the prediction of TMC where RF achieved an R2 of 0.95 and SVM achieved an accuracy of 93.18%;however,the adjusted kernel enhanced the accuracy of SVM 99.81%which shows that the interpretable algorithms outperformed the typical algorithms.The sensitivity analysis indicates that the most significant parameters influencing TMC are the age,total trip time,and the number of drivers.
基金supported by Northern Border University,Arar,KSA,through the Project Number“NBU-FFR-2024-2248-02”.
文摘This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc On-Demand Distance Vector(AODV),Dynamic Source Routing(DSR),and Zone Routing Protocol(ZRP).In this paper,the evaluation will be carried out using complete sets of statistical tests such as Kruskal-Wallis,Mann-Whitney,and Friedman.It articulates a systematic evaluation of how the performance of the previous protocols varies with the number of nodes and the mobility patterns.The study is premised upon the Quality of Service(QoS)metrics of throughput,packet delivery ratio,and end-to-end delay to gain an adequate understanding of the operational efficiency of each protocol under different network scenarios.The findings explained significant differences in the performance of different routing protocols;as a result,decisions for the selection and optimization of routing protocols can be taken effectively according to different network requirements.This paper is a step forward in the general understanding of the routing dynamics of MANETs and contributes significantly to the strategic deployment of robust and efficient network infrastructures.
基金supported in part by the National Natural Science Foundation of China (NSFC)(61703086, 61773106)the IAPI Fundamental Research Funds (2018ZCX27)
文摘This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consensus protocol is designed by using delayed and memorized state information.Under the proportional-integral consensus protocol,the consensus problem of the multi-agent system is transformed into the problem of asymptotic stability of the corresponding linear time-invariant time-delay system.Note that the location of the eigenvalues of the corresponding characteristic function of the linear time-invariant time-delay system not only determines the stability of the system,but also plays a critical role in the dynamic performance of the system.In this paper,based on recent results on the distribution of roots of quasi-polynomials,several necessary conditions for Hurwitz stability for a class of quasi-polynomials are first derived.Then allowable regions of consensus protocol parameters are estimated.Some necessary and sufficient conditions for determining effective protocol parameters are provided.The designed protocol can achieve consensus and improve the dynamic performance of the second-order multi-agent system.Moreover,the effects of delays on consensus of systems of harmonic oscillators/double integrators under proportional-integral consensus protocols are investigated.Furthermore,some results on proportional-integral consensus are derived for a class of high-order linear time-invariant multi-agent systems.