The linearity of the traveling-wave tube is a very important characteristic for a modern communication system. To improve the linearity of the traveling-wave tube at no expense of the saturated output power and overal...The linearity of the traveling-wave tube is a very important characteristic for a modern communication system. To improve the linearity of the traveling-wave tube at no expense of the saturated output power and overall efficiency, a modified pitch profile combined with a small adjustment of operating parameters is proposed. The optimal design of the helix circuit is evaluated theoretically by a large signal analysis, and the experimental test is also carried out to make a comparison of performance between the novel and original designed traveling-wave tubes. The experiments show that the saturated output powers and efficiencies of these two tubes are close to each other, while the linearity of the traveling-wave tube is obviously improved. The total phase shift and AM/PM conversion at saturation of the novel tube, averaged over the operating band, are only 30.6°/d B and 2.5°/d B, respectively, which are 20.1°/d B and 1.6°/d B lower than those of the original tube, respectively. Moreover, the third-order intermodulation of the novel tube is up to 2.2 d Bc lower than that of the original tube.展开更多
A novel slotted helix slow-wave structure (SWS) is proposed to develop a high power, wide-bandwidth, and high reliability millimeter-wave traveling-wave tube (TWT). This novel structure, which has higher heat capa...A novel slotted helix slow-wave structure (SWS) is proposed to develop a high power, wide-bandwidth, and high reliability millimeter-wave traveling-wave tube (TWT). This novel structure, which has higher heat capacity than a conven- tional helix SWS, evolves from conventional helix SWS with three parallel rows of rectangular slots made in the outside of the helix tape. In this paper, the electromagnetic characteristics and the beam-wave interaction of this novel structure operating in the Ka-band are investigated. From our calculations, when the designed beam voltage and beam current are set to be 18.45 kV and 0.2 A, respectively, this novel circuit can produce over 700-W average output power in a frequency range from 27.5 GHz to 32.5 GHz, and the corresponding conversion efficiency values vary from 19% to 21.3%, and the maximum output power is 787 W at 30 GHz.展开更多
Based on the combination of a staggered double vane slow wave structure (SWS) and round electron beam, a 200-W W-band traveling-wave tube (TWT) amplifier is studied in this paper. The main advantages of round beam...Based on the combination of a staggered double vane slow wave structure (SWS) and round electron beam, a 200-W W-band traveling-wave tube (TWT) amplifier is studied in this paper. The main advantages of round beam operation over the sheet beam is that the round beam can be formed more easily and the focus requirement can be dramatically reduced. It operates in the fundamental mode at the first spatial harmonic. The geometric parameters are optimized and a transition structure for the slow wave circuit is designed which can well match the signal that enters into and goes out from the tube. Then a TWT model is established and the particle-in-cell (PIC) simulation results show that the tube can provide over 200-W output power in a frequency range of 88 GHz-103 GHz with a maximum power of 289 W at 95 GHz, on the assumption that the input power is 0.1 W and the beam power is 5.155 kW. The corresponding conversion efficiency and gain at 95 GHz are expected to be 5.6% and 34.6 dB, respectively. Such amplifiers can potentially be used in high power microwave-power-modules (MPM) and for other portable applications.展开更多
Millimeter-wave traveling-wave tube (TWT) prevails nowadays as the amplifier for radar, communication and electronic countermeasures. The rectangular waveguide grating is a promising all-metal interaction circuit fo...Millimeter-wave traveling-wave tube (TWT) prevails nowadays as the amplifier for radar, communication and electronic countermeasures. The rectangular waveguide grating is a promising all-metal interaction circuit for the millimeter-wave TWT with advantages of high power capacity, fine heat dissipation, scalability to smaller dimen- sions for shorter wavelengths, compact structure and robust performance. Compared with the traditional closed structure, the open rectangular waveguide grating (ORWG) has wider bandwidth, lower cut-off frequency, and higher machining precision for higher working frequencies due to the open transverse. It is a potential structure that can work in the millimeter wave and even Terahertz band. The rf characteristics including dispersion and interaction impedance are investigated by both theoretic calculation and software simulation. The influences of the structure parameters are also discussed and compared, and the theoretical results agree well with the simula- tion results. Based on the study, the ORWG will favor the design of a broadband and high-power millimeter-wave TWT.展开更多
The 60-GHz traveling-wave tube (TWT) prevails nowadays as the amplifier for the satellite communication and electronic countermeasures. The folded waveguide (FW) is a promising all-metal slow-wave structure (SWS...The 60-GHz traveling-wave tube (TWT) prevails nowadays as the amplifier for the satellite communication and electronic countermeasures. The folded waveguide (FW) is a promising all-metal slow-wave structure (SWS) for the 60-GHz TWT with advantages of robust performance, fine heat dissipation, considerable power and bandwidth. A novel FW periodically loaded with rectangular grooves is analyzed for the purpose of gaining higher power and gain. The rf characteristics are investigated by numerical simulation, and the nonlinear large- signal performance of such a TWT is analyzed by a 3I) particle-in-cell code MAGIC. Compared with normal circuits, relatively higher continuous-wave power (40-56 W) and similar bandwidth (5 GHz) are predicted by simulation. Meanwhile, the designed operation voltage is 10.5 kV, which keeps the low-voltage advantage of the popular helix TWT competitor. The novel FW will favor the design of a broadband and high-power 60-GHz TWT展开更多
The re-entrant double-staggered ladder slow-wave structure is employed in a high-power V-band coupled-cavity traveling-wave tube. This structure has a wide bandwidth, a moderate interaction impedance, and excellent th...The re-entrant double-staggered ladder slow-wave structure is employed in a high-power V-band coupled-cavity traveling-wave tube. This structure has a wide bandwidth, a moderate interaction impedance, and excellent thermal dissipation properties, as well as easy fabrication. A well-matched waveguide coupler is proposed for the structure. Combining the design of attenuators, a full-scale three-dimensional circuit model for the V-band coupled-cavity traveling- wave tube is constructed. The electromagnetic characteristics and the beam wave interaction of this structure are investigated. The beam current is set to be 100 mA, and the cathode voltage is tuned from 16.8 kV to 15.8 kV. The calculation results show that this tube can produce a saturated average output power over 100 W with an instantaneous bandwidth greater than 1.25 GHz in the frequency ranging from 58 GHz to 62 GHz. The corresponding gain and electronic efficiency can reach over 32 dB and 6.5%, respectively.展开更多
An open-styled dielectric-lined azimuthMly periodic circular waveguide (ODLAP-CW) for a millimeter-wave traveling-wave tube (TWT) is proposed, which is a modified form of a dielectric-lined azimuthally periodic ci...An open-styled dielectric-lined azimuthMly periodic circular waveguide (ODLAP-CW) for a millimeter-wave traveling-wave tube (TWT) is proposed, which is a modified form of a dielectric-lined azimuthally periodic circular waveguide (DLAP-CW). The slow-wave characteristics of the open-styled DLAP-CW are studied by using the spatial harmonics method, which includes normalized phase velocity and interaction impedance. The complicated dispersion equations are numerically solved with MATLAB and the results are in good agreement with the simulation results obtained from HFSS. The influence of structural parameters on the RF properties is investigated based on our theory. The numerical results show that the optimal thickness of the metal rod can increase the interaction impedance, with the dielectric constant held fixed. Finally, the slow-wave characteristics and transmission properties of an open-styled structure are compared with those of the DLAP-CW. The results validate that the mode competition is eliminated in the improved structure with only a slight influence on the dispersion characteristics, which may significantly improve the stability of an open-styled DLAP-CW-based TWT, and the interaction efficiency is also improved.展开更多
A new concept of inner-feedback-style traveling wave tube oscillator, which is based on a traveling-wave tube having a partial reflector located at near the junction between the slow-wave structure and the output coup...A new concept of inner-feedback-style traveling wave tube oscillator, which is based on a traveling-wave tube having a partial reflector located at near the junction between the slow-wave structure and the output coupler and a mechanical tuner connected to the input coupler, is proposed. Simulations by CHIPIC code show that the inner-feedback-style traveling wave tube oscillator having 100W of power, about 10% of electron efficiency and a tunable band of 73.35-73.91 GHz may be achieved. Compared with Backward Wave Oscillators (BWOs), the new devices have similar ability for tuning, and have much higher electron efficiency, suggesting much more potential as a Terahertz source.展开更多
Very high-energy electrons(VHEEs)are potential candidates for FLASH radiotherapy for deep-seated tumors.We proposed a compact VHEE facility based on an X-band high-gradient high-power technique.In this study,we invest...Very high-energy electrons(VHEEs)are potential candidates for FLASH radiotherapy for deep-seated tumors.We proposed a compact VHEE facility based on an X-band high-gradient high-power technique.In this study,we investigated and realized the first X-band backward traveling-wave(BTW)accelerating structure as the buncher for a VHEE facility.A method for calculating the parameters of single cell from the field distribution was introduced to simplify the design of the BTW structure.Time-domain circuit equations were applied to calculate the transient beam parameters of the buncher in the unsteady state.A prototype of the BTW structure with a thermionic cathode-diode electron gun was designed,fabricated,and tested at high power at the Tsinghua X-band high-power test stand.The structure successfully operated with 5-MW microwave pulses from the pulse compressor and outputted electron bunches with an energy of 8 MeV and a pulsed current of 108 mA.展开更多
A W-band traveling-wave tube (TWT) with double-groove loaded folded waveguide structure (FWSWS) has been designed and numerically modelled. The nonlinear performance of such a TWT is investigated by a particle-in-cell...A W-band traveling-wave tube (TWT) with double-groove loaded folded waveguide structure (FWSWS) has been designed and numerically modelled. The nonlinear performance of such a TWT is investigated by a particle-in-cell code MAGIC3D. Simulation results indicate this TWT produces a saturated electromagnetic power of 170.2 W at 90 GHz, corresponding to 36.9 dB gain and 69.6 mm interaction distance. A comparison between the novel folded waveguide traveling-wave tube (FWTWT) and the conventional one is also carried out to verify the effect of groove loading on the large-signal performance of TWT. Within the same working conditions, the double groove-loaded FWTWT could obtain higher saturated output power and gain in a shorter interaction length. The maximum of output power and gain of this novel TWT is 58.6% and 10% higher than those of the conventional FWTWT, while the 3-dB bandwidth of TWT is reduced to 4 GHz. With the additional advantage of ease of fabrication based on micro-electro-mechanical systems (MEMS) technologies, the double-groove loaded FWSWS is suitable for a millimeter-wave TWT with high power capacity and gain.展开更多
The dendrite growth behavior of high-strength steel during slab continuous casting with a traveling-wave magnetic field was studied in this paper. The morphology of the solidification structure and composition distrib...The dendrite growth behavior of high-strength steel during slab continuous casting with a traveling-wave magnetic field was studied in this paper. The morphology of the solidification structure and composition distribution were analyzed. Results showed that the columnar crystals could deflect and break when the traveling-wave magnetic field had low current intensity. With the increase in current intensity, the secondary dendrite arm spacing and solute permeability decreased, and the columnar crystal transformed into an equiaxed crystal. The electromagnetic force caused by the traveling-wave magnetic field changed the temperature gradient and velocity magnitude and promoted the breaking and fusing of dendrites. Dendrite compactness and composition uniformity were arranged in descending order as follows:columnar-toequiaxed transition (high current intensity), columnar crystal zone (low current intensity), columnar-to-equiaxed transition (low current intensity), and equiaxed crystal zone (high current intensity). Verified numerical simulation results combined with the boundary layer theory of solidification front and dendrite breaking–fusing model revealed the dendrite deflection mechanism and growth process. When thermal stress is not considered, and no narrow segment can be found in the dendrite, the velocity magnitude on the solidification front of liquid steel can reach up to 0.041 m/s before the dendrites break.展开更多
Radio-frequency(RF)breakdown analysis and location are critical for successful development of high-gradient traveling-wave(TW)accelerators,especially those expected to generate high-intensity,high-power beams.Compared...Radio-frequency(RF)breakdown analysis and location are critical for successful development of high-gradient traveling-wave(TW)accelerators,especially those expected to generate high-intensity,high-power beams.Compared with commonly used schemes involving dedicated devices or complicated techniques,a convenient approach for breakdown locating based on transmission line(TL)theory offers advantages in the typical constant-gradient TW-accelerating structure.To deliver such an approach,an equivalent TL model has been constructed to equate the TW-accelerating structure based on the fun-damental theory of the TL transient response in the time domain.An equivalence relationship between the TW-accelerating structure and the TL model has been established via analytical derivations associated with grid charts and verified by TL circuit simulations.Furthermore,to validate the proposed fault-locating method in practical applications,an elaborate analysis via such a method has been conducted for the recoverable RF-breakdown phenomena observed at an existing prototype of a TW-accelerating-structure-based beam injector constructed at the Huazhong University of Science and Technology.In addition,further considerations and discussion for extending the applications of the proposed method have been given.This breakdown-locating approach involving the transient response in the framework of TL theory can be a conceivable supple-ment to existing methods,facilitating solution to construction problems at an affordable cost.展开更多
In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechani...In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechanical anisotropy was investigated.The results revealed that the alloy tube contains the high content(Mg1-xZnx)11Ce phase and the low content of Mg12Ce phase.These second phases are respectively incoherent and coherent with the Mg matrix,and their influence can be ignored.Additionally,the alloy tube exhibited a weak basal fiber texture,where the c-axis was aligned along the 0°∼30°tilt from TD to ED.Such a texture made the initial deformation(at 1.0%∼1.6%strain)of the three samples controlled by comparable basalslip.As deformation progressed(1.6∼9.0%strain),larger amounts of ETWs nucleated and gradually approached saturation in the three samples,re-orienting the c-axis to a 0°∼±30°deviation with respect to the loading directions.Meanwhile,the prismatic and pyramidal<c+a>slips replaced the dominant deformation progressively until fracture.Eventually,the similar deformation mechanisms determined by the weak initial texture in the three samples contribute to the comparable strain hardening rates,resulting in the low compressive anisotropy of the alloy tube.展开更多
In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to c...In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.展开更多
BACKGROUND Since its description in 1790 by Hunter,the nasogastric tube(NGT)is commonly used in any healthcare setting for alleviating gastrointestinal symptoms or enteral feeding.However,the risks associated with its...BACKGROUND Since its description in 1790 by Hunter,the nasogastric tube(NGT)is commonly used in any healthcare setting for alleviating gastrointestinal symptoms or enteral feeding.However,the risks associated with its placement are often underes-timated.Upper airway obstruction with a NGT is an uncommon but potentially life-threatening complication.NGT syndrome is characterized by the presence of an NGT,throat pain and vocal cord(VC)paralysis,usually bilateral.It is poten-tially life–threatening,and early diagnosis is the key to the prevention of fatal upper airway obstruction.However,fewer cases may have been reported than might have occurred,primarily due to the clinicians'unawareness.The lack of specific signs and symptoms and the inability to prove temporal relation with NGT insertion has made diagnosing the syndrome quite challenging.AIM To review and collate the data from the published case reports and case series to understand the possible risk factors,early warning signs and symptoms for timely detection to prevent the manifestation of the complete syndrome with life-threatening airway obstruction.METHODS We conducted a systematic search for this meta-summary from the database of PubMed,EMBASE,Reference Citation Analysis(https://www.referencecitation-analysis.com/)and Google scholar,from all the past studies till August 2023.The search terms included major MESH terms"Nasogastric tube","Intubation,Gastrointestinal","Vocal Cord Paralysis",and“Syndrome”.All the case reports and case series were evaluated,and the data were extracted for patient demographics,clinical symptomatology,diagnostic and therapeutic interventions,clinical course and outcomes.A datasheet for evaluation was further prepared.RESULTS Twenty-seven cases,from five case series and 13 case reports,of NGT syndrome were retrieved from our search.There was male predominance(17,62.96%),and age at presentation ranged from 28 to 86 years.Ten patients had diabetes mellitus(37.04%),and nine were hypertensive(33.33%).Only three(11.11%)patients were reported to be immunocompromised.The median time for developing symptoms after NGT insertion was 14.5 d(interquartile range 6.25-33.75 d).The most commonly reported reason for NGT insertion was acute stroke(10,37.01%)and the most commonly reported symptoms were stridor or wheezing 17(62.96%).In 77.78%of cases,bilateral VC were affected.The only treatment instituted in most patients(77.78%)was removing the NG tube.Most patients(62.96%)required tracheostomy for airway protection.But 8 of the 23 survivors recovered within five weeks and could be decannulated.Three patients were reported to have died.CONCLUSION NGT syndrome is an uncommon clinical complication of a very common clinical procedure.However,an under-reporting is possible because of misdiagnosis or lack of awareness among clinicians.Patients in early stages and with mild symptoms may be missed.Further,high variability in the presentation timing after NGT insertion makes diagnosis challenging.Early diagnosis and prompt removal of NGT may suffice in most patients,but a significant proportion of patients presenting with respiratory compromise may require tracheostomy for airway protection.展开更多
The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing t...The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing the Cardox tube.However,there is a lack of impact pressure testing of disposable tubes under real working conditions,selection of gas explosion design parameters,and systematic analysis of blasting vibration.This limitation has constrained the widespread application of disposable fracturing tubes in engineering.A joint monitoring of the pressure-time curves in the disposable tubes and boreholes was conducted.The rock-breaking effect of varying hole spacing parameters in the EFLCO_(2)design was analyzed,and a systematic study was carried out on the vibration peak value,frequency,and energy characteristics.The results show that(1)the pressure distribution characteristics,stress peak value,and duration in the disposable tubes are different from those of Cardox tubes,which show multi-peak distribution,low-pressure peak value,and short duration.The correlation between the pressure in the disposable tube,filling pressure,and liquid CO_(2)weight is established,and a theoretical calculation method for the borehole wall pressure is proposed;(2)The hole spacing in rocks of different hardness is suggested;and(3)At the same scale distance,the peak particle velocity(PPV)caused by EFLCO_(2)(PPVCO_(2))is significantly smaller than that caused by blasting(PPVexplosive).The ratio of PPVexplosive to PPVCO_(2)is a power function related to scale distance,and a distance-related zonality exist in this relationship.The frequency composition of the vibration signal caused by EFLCO_(2)is relatively simple with a narrow frequency band.Its PPV and energy are mainly concentrated in the low-frequency band.This research contributes to the optimization of disposable fracturing tubes,gas explosion design,and vibration hazard control.展开更多
Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with pre...Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization.展开更多
Thin-walled structures are widely used in cars due to their lightweight construction and energy-absorbing properties.However,issues such as high initial stress and lowenergy-absorbing efficiency arise.This study propo...Thin-walled structures are widely used in cars due to their lightweight construction and energy-absorbing properties.However,issues such as high initial stress and lowenergy-absorbing efficiency arise.This study proposes a novel energy-absorbing structure inwhich a straight tube is combinedwith a conical tube and a bamboo-inspired bulkhead structure is introduced.This configuration allows the conical tube to flip outward first and then fold together with the straight tube.This deformation mode absorbs more energy and less peak force than the conical tube sinking and flipping inward.Through finite element numerical simulation,the specific energy absorption capacity of the structure is increased by 26%compared to that of a regular circular cross-section tube.Finally,the impact resistance of the bionic straight tapered tube structure is further improved through multi-objective optimization,promoting the engineering application and lightweight design of hybrid cross-section tubes.展开更多
The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of o...The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of only finite element optimization.In this paper,the hydroforming process of 5A02 aluminum alloy variable diameter tube was as the research object.Fuzzy control was used to optimize the loading path,and the fuzzy rule base was established based on FEM.The minimum wall thickness and wall thickness reduction rate were determined as input membership functions,and the axial feeds variable value of the next step was used as output membership functions.The results show that the optimized loading path greatly improves the uniformity of wall thickness and the forming effect compared with the linear loading path.The round corner lamination rate of the tube is 91.2%under the fuzzy control optimized loading path,which was increased by 47.1%and 22.6%compared with linear loading Path 1 and Path 2,respectively.Based on the optimized loading path in the experiment,the minimum wall thickness of the variable diameter tube was 1.32 mm and the maximum thinning rate was 12.4%.The experimental results were consistent with the simulation results,which verified the accuracy of fuzzy control.The research results provide a reference for improving the forming quality of thin-walled tubes and plates.展开更多
This study includes an experimental and numerical analysis of the performances of a parabolic trough collector(PTC)with and without cylindrical turbulators.The PTC is designed with dimensions of 2.00 m in length and 1...This study includes an experimental and numerical analysis of the performances of a parabolic trough collector(PTC)with and without cylindrical turbulators.The PTC is designed with dimensions of 2.00 m in length and 1.00 m in width.The related reflector is made of lined sheets of aluminum,and the tubes are made of stainless steel used for the absorption of heat.They have an outer diameter of 0.051 m and a wall thickness of 0.002 m.Water,used as a heat transfer fluid(HTF),flows through the absorber tube at a mass flow rate of 0.7 kg/s.The dimensions of cylindrical turbulators are 0.04 m in length and 0.047 m in diameter.Simulations are performed using the ANSYS Fluent 2020 R2 software.The PTC performance is evaluated by comparing the experimental and numerical outcomes,namely,the outlet temperature,useful heat,and thermal efficiency for a modified tube(MT)(tube with novel cylindrical turbulators)and a plain tube(PT)(tube without novel cylindrical turbulators).According to the results,the experimental outlet temperatures recorded 63.2°C and 50.5°C for the MT and PT,respectively.The heat gain reaches 1137.5 Win the MT and 685.8 Win the PT.Compared to the PT collector,the PTC exhibited a(1.64 times)higher efficiency.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61401430)
文摘The linearity of the traveling-wave tube is a very important characteristic for a modern communication system. To improve the linearity of the traveling-wave tube at no expense of the saturated output power and overall efficiency, a modified pitch profile combined with a small adjustment of operating parameters is proposed. The optimal design of the helix circuit is evaluated theoretically by a large signal analysis, and the experimental test is also carried out to make a comparison of performance between the novel and original designed traveling-wave tubes. The experiments show that the saturated output powers and efficiencies of these two tubes are close to each other, while the linearity of the traveling-wave tube is obviously improved. The total phase shift and AM/PM conversion at saturation of the novel tube, averaged over the operating band, are only 30.6°/d B and 2.5°/d B, respectively, which are 20.1°/d B and 1.6°/d B lower than those of the original tube, respectively. Moreover, the third-order intermodulation of the novel tube is up to 2.2 d Bc lower than that of the original tube.
基金Project supported by the National Natural Science Foundation of China(Grant No.61271029)the Natural Science Key Laboratory Foundationthe Natural Science Fund for Distinguished Young Scholars of China(Grant No.61125103)
文摘A novel slotted helix slow-wave structure (SWS) is proposed to develop a high power, wide-bandwidth, and high reliability millimeter-wave traveling-wave tube (TWT). This novel structure, which has higher heat capacity than a conven- tional helix SWS, evolves from conventional helix SWS with three parallel rows of rectangular slots made in the outside of the helix tape. In this paper, the electromagnetic characteristics and the beam-wave interaction of this novel structure operating in the Ka-band are investigated. From our calculations, when the designed beam voltage and beam current are set to be 18.45 kV and 0.2 A, respectively, this novel circuit can produce over 700-W average output power in a frequency range from 27.5 GHz to 32.5 GHz, and the corresponding conversion efficiency values vary from 19% to 21.3%, and the maximum output power is 787 W at 30 GHz.
基金Project supported by the National Natural Science Foundation of China for Distinguished Young Scholars (Grant No. 61125103)the National Natural Science Foundation of China (Grant Nos. 60971038 and 60971031)the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2009Z003)
文摘Based on the combination of a staggered double vane slow wave structure (SWS) and round electron beam, a 200-W W-band traveling-wave tube (TWT) amplifier is studied in this paper. The main advantages of round beam operation over the sheet beam is that the round beam can be formed more easily and the focus requirement can be dramatically reduced. It operates in the fundamental mode at the first spatial harmonic. The geometric parameters are optimized and a transition structure for the slow wave circuit is designed which can well match the signal that enters into and goes out from the tube. Then a TWT model is established and the particle-in-cell (PIC) simulation results show that the tube can provide over 200-W output power in a frequency range of 88 GHz-103 GHz with a maximum power of 289 W at 95 GHz, on the assumption that the input power is 0.1 W and the beam power is 5.155 kW. The corresponding conversion efficiency and gain at 95 GHz are expected to be 5.6% and 34.6 dB, respectively. Such amplifiers can potentially be used in high power microwave-power-modules (MPM) and for other portable applications.
基金Supported by the National Natural Science Foundation of China under Grant No 61271029the National Science Fund for Distinguished Young Scholars of China under Grant No 61125103the National Research Foundation of Korea under Grant No MSIP:NRF-2009-0083512
文摘Millimeter-wave traveling-wave tube (TWT) prevails nowadays as the amplifier for radar, communication and electronic countermeasures. The rectangular waveguide grating is a promising all-metal interaction circuit for the millimeter-wave TWT with advantages of high power capacity, fine heat dissipation, scalability to smaller dimen- sions for shorter wavelengths, compact structure and robust performance. Compared with the traditional closed structure, the open rectangular waveguide grating (ORWG) has wider bandwidth, lower cut-off frequency, and higher machining precision for higher working frequencies due to the open transverse. It is a potential structure that can work in the millimeter wave and even Terahertz band. The rf characteristics including dispersion and interaction impedance are investigated by both theoretic calculation and software simulation. The influences of the structure parameters are also discussed and compared, and the theoretical results agree well with the simula- tion results. Based on the study, the ORWG will favor the design of a broadband and high-power millimeter-wave TWT.
基金Supported by the National Natural Science Foundation of China under Grant No 61271029the National Science Fund for Distinguished Young Scholars of China under Grant No 61125103the National Research Foundation of Korea under Grant No MSIP:NRF-2009-0083512
文摘The 60-GHz traveling-wave tube (TWT) prevails nowadays as the amplifier for the satellite communication and electronic countermeasures. The folded waveguide (FW) is a promising all-metal slow-wave structure (SWS) for the 60-GHz TWT with advantages of robust performance, fine heat dissipation, considerable power and bandwidth. A novel FW periodically loaded with rectangular grooves is analyzed for the purpose of gaining higher power and gain. The rf characteristics are investigated by numerical simulation, and the nonlinear large- signal performance of such a TWT is analyzed by a 3I) particle-in-cell code MAGIC. Compared with normal circuits, relatively higher continuous-wave power (40-56 W) and similar bandwidth (5 GHz) are predicted by simulation. Meanwhile, the designed operation voltage is 10.5 kV, which keeps the low-voltage advantage of the popular helix TWT competitor. The novel FW will favor the design of a broadband and high-power 60-GHz TWT
基金Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 61125103)the Vacuum Electronics National Lab Foundation, China (Grant No. 9140C050101110C0501)the Fundamental Research Funds for the Central Universities, China (Grant Nos. ZYGX2009Z003 and ZYGX2010J054)
文摘The re-entrant double-staggered ladder slow-wave structure is employed in a high-power V-band coupled-cavity traveling-wave tube. This structure has a wide bandwidth, a moderate interaction impedance, and excellent thermal dissipation properties, as well as easy fabrication. A well-matched waveguide coupler is proposed for the structure. Combining the design of attenuators, a full-scale three-dimensional circuit model for the V-band coupled-cavity traveling- wave tube is constructed. The electromagnetic characteristics and the beam wave interaction of this structure are investigated. The beam current is set to be 100 mA, and the cathode voltage is tuned from 16.8 kV to 15.8 kV. The calculation results show that this tube can produce a saturated average output power over 100 W with an instantaneous bandwidth greater than 1.25 GHz in the frequency ranging from 58 GHz to 62 GHz. The corresponding gain and electronic efficiency can reach over 32 dB and 6.5%, respectively.
基金supported by the National Natural Science Foundation of China (Grant No. 60971038)the Fundamental Research Funds for the Central Universities, China (Grant Nos. ZYGX2009Z003 and ZYGX2010J054)
文摘An open-styled dielectric-lined azimuthMly periodic circular waveguide (ODLAP-CW) for a millimeter-wave traveling-wave tube (TWT) is proposed, which is a modified form of a dielectric-lined azimuthally periodic circular waveguide (DLAP-CW). The slow-wave characteristics of the open-styled DLAP-CW are studied by using the spatial harmonics method, which includes normalized phase velocity and interaction impedance. The complicated dispersion equations are numerically solved with MATLAB and the results are in good agreement with the simulation results obtained from HFSS. The influence of structural parameters on the RF properties is investigated based on our theory. The numerical results show that the optimal thickness of the metal rod can increase the interaction impedance, with the dielectric constant held fixed. Finally, the slow-wave characteristics and transmission properties of an open-styled structure are compared with those of the DLAP-CW. The results validate that the mode competition is eliminated in the improved structure with only a slight influence on the dispersion characteristics, which may significantly improve the stability of an open-styled DLAP-CW-based TWT, and the interaction efficiency is also improved.
基金Supported by the National Natural Science Foundation of China (No. 61172016)
文摘A new concept of inner-feedback-style traveling wave tube oscillator, which is based on a traveling-wave tube having a partial reflector located at near the junction between the slow-wave structure and the output coupler and a mechanical tuner connected to the input coupler, is proposed. Simulations by CHIPIC code show that the inner-feedback-style traveling wave tube oscillator having 100W of power, about 10% of electron efficiency and a tunable band of 73.35-73.91 GHz may be achieved. Compared with Backward Wave Oscillators (BWOs), the new devices have similar ability for tuning, and have much higher electron efficiency, suggesting much more potential as a Terahertz source.
基金supported by the National Natural Science Foundation of China(No.11922504).
文摘Very high-energy electrons(VHEEs)are potential candidates for FLASH radiotherapy for deep-seated tumors.We proposed a compact VHEE facility based on an X-band high-gradient high-power technique.In this study,we investigated and realized the first X-band backward traveling-wave(BTW)accelerating structure as the buncher for a VHEE facility.A method for calculating the parameters of single cell from the field distribution was introduced to simplify the design of the BTW structure.Time-domain circuit equations were applied to calculate the transient beam parameters of the buncher in the unsteady state.A prototype of the BTW structure with a thermionic cathode-diode electron gun was designed,fabricated,and tested at high power at the Tsinghua X-band high-power test stand.The structure successfully operated with 5-MW microwave pulses from the pulse compressor and outputted electron bunches with an energy of 8 MeV and a pulsed current of 108 mA.
基金supported by the National Natural Science Foundation of China(Grant No. 60971038)the Talent Fund of Chinese Education Administration
文摘A W-band traveling-wave tube (TWT) with double-groove loaded folded waveguide structure (FWSWS) has been designed and numerically modelled. The nonlinear performance of such a TWT is investigated by a particle-in-cell code MAGIC3D. Simulation results indicate this TWT produces a saturated electromagnetic power of 170.2 W at 90 GHz, corresponding to 36.9 dB gain and 69.6 mm interaction distance. A comparison between the novel folded waveguide traveling-wave tube (FWTWT) and the conventional one is also carried out to verify the effect of groove loading on the large-signal performance of TWT. Within the same working conditions, the double groove-loaded FWTWT could obtain higher saturated output power and gain in a shorter interaction length. The maximum of output power and gain of this novel TWT is 58.6% and 10% higher than those of the conventional FWTWT, while the 3-dB bandwidth of TWT is reduced to 4 GHz. With the additional advantage of ease of fabrication based on micro-electro-mechanical systems (MEMS) technologies, the double-groove loaded FWSWS is suitable for a millimeter-wave TWT with high power capacity and gain.
基金financially supported by the National Natural Science Foundation of China (No.51774031)。
文摘The dendrite growth behavior of high-strength steel during slab continuous casting with a traveling-wave magnetic field was studied in this paper. The morphology of the solidification structure and composition distribution were analyzed. Results showed that the columnar crystals could deflect and break when the traveling-wave magnetic field had low current intensity. With the increase in current intensity, the secondary dendrite arm spacing and solute permeability decreased, and the columnar crystal transformed into an equiaxed crystal. The electromagnetic force caused by the traveling-wave magnetic field changed the temperature gradient and velocity magnitude and promoted the breaking and fusing of dendrites. Dendrite compactness and composition uniformity were arranged in descending order as follows:columnar-toequiaxed transition (high current intensity), columnar crystal zone (low current intensity), columnar-to-equiaxed transition (low current intensity), and equiaxed crystal zone (high current intensity). Verified numerical simulation results combined with the boundary layer theory of solidification front and dendrite breaking–fusing model revealed the dendrite deflection mechanism and growth process. When thermal stress is not considered, and no narrow segment can be found in the dendrite, the velocity magnitude on the solidification front of liquid steel can reach up to 0.041 m/s before the dendrites break.
基金supported by the National Natural Science Foundation of China(No.11905074).
文摘Radio-frequency(RF)breakdown analysis and location are critical for successful development of high-gradient traveling-wave(TW)accelerators,especially those expected to generate high-intensity,high-power beams.Compared with commonly used schemes involving dedicated devices or complicated techniques,a convenient approach for breakdown locating based on transmission line(TL)theory offers advantages in the typical constant-gradient TW-accelerating structure.To deliver such an approach,an equivalent TL model has been constructed to equate the TW-accelerating structure based on the fun-damental theory of the TL transient response in the time domain.An equivalence relationship between the TW-accelerating structure and the TL model has been established via analytical derivations associated with grid charts and verified by TL circuit simulations.Furthermore,to validate the proposed fault-locating method in practical applications,an elaborate analysis via such a method has been conducted for the recoverable RF-breakdown phenomena observed at an existing prototype of a TW-accelerating-structure-based beam injector constructed at the Huazhong University of Science and Technology.In addition,further considerations and discussion for extending the applications of the proposed method have been given.This breakdown-locating approach involving the transient response in the framework of TL theory can be a conceivable supple-ment to existing methods,facilitating solution to construction problems at an affordable cost.
基金supported by the National Natural Science Foundation of China(Nos.51974082,51901037)State Key Laboratory of Baiyunobo Rare Earth Resource Research and Comprehensive Utilization(No.2021H2279)Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project 2.0 of China,No.BP0719037).
文摘In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechanical anisotropy was investigated.The results revealed that the alloy tube contains the high content(Mg1-xZnx)11Ce phase and the low content of Mg12Ce phase.These second phases are respectively incoherent and coherent with the Mg matrix,and their influence can be ignored.Additionally,the alloy tube exhibited a weak basal fiber texture,where the c-axis was aligned along the 0°∼30°tilt from TD to ED.Such a texture made the initial deformation(at 1.0%∼1.6%strain)of the three samples controlled by comparable basalslip.As deformation progressed(1.6∼9.0%strain),larger amounts of ETWs nucleated and gradually approached saturation in the three samples,re-orienting the c-axis to a 0°∼±30°deviation with respect to the loading directions.Meanwhile,the prismatic and pyramidal<c+a>slips replaced the dominant deformation progressively until fracture.Eventually,the similar deformation mechanisms determined by the weak initial texture in the three samples contribute to the comparable strain hardening rates,resulting in the low compressive anisotropy of the alloy tube.
基金the grants from the National Natural Science Foundation of China(Nos.52078152 and 12002095)Guangzhou Government-University Union Fund(No.202201020532)。
文摘In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.
文摘BACKGROUND Since its description in 1790 by Hunter,the nasogastric tube(NGT)is commonly used in any healthcare setting for alleviating gastrointestinal symptoms or enteral feeding.However,the risks associated with its placement are often underes-timated.Upper airway obstruction with a NGT is an uncommon but potentially life-threatening complication.NGT syndrome is characterized by the presence of an NGT,throat pain and vocal cord(VC)paralysis,usually bilateral.It is poten-tially life–threatening,and early diagnosis is the key to the prevention of fatal upper airway obstruction.However,fewer cases may have been reported than might have occurred,primarily due to the clinicians'unawareness.The lack of specific signs and symptoms and the inability to prove temporal relation with NGT insertion has made diagnosing the syndrome quite challenging.AIM To review and collate the data from the published case reports and case series to understand the possible risk factors,early warning signs and symptoms for timely detection to prevent the manifestation of the complete syndrome with life-threatening airway obstruction.METHODS We conducted a systematic search for this meta-summary from the database of PubMed,EMBASE,Reference Citation Analysis(https://www.referencecitation-analysis.com/)and Google scholar,from all the past studies till August 2023.The search terms included major MESH terms"Nasogastric tube","Intubation,Gastrointestinal","Vocal Cord Paralysis",and“Syndrome”.All the case reports and case series were evaluated,and the data were extracted for patient demographics,clinical symptomatology,diagnostic and therapeutic interventions,clinical course and outcomes.A datasheet for evaluation was further prepared.RESULTS Twenty-seven cases,from five case series and 13 case reports,of NGT syndrome were retrieved from our search.There was male predominance(17,62.96%),and age at presentation ranged from 28 to 86 years.Ten patients had diabetes mellitus(37.04%),and nine were hypertensive(33.33%).Only three(11.11%)patients were reported to be immunocompromised.The median time for developing symptoms after NGT insertion was 14.5 d(interquartile range 6.25-33.75 d).The most commonly reported reason for NGT insertion was acute stroke(10,37.01%)and the most commonly reported symptoms were stridor or wheezing 17(62.96%).In 77.78%of cases,bilateral VC were affected.The only treatment instituted in most patients(77.78%)was removing the NG tube.Most patients(62.96%)required tracheostomy for airway protection.But 8 of the 23 survivors recovered within five weeks and could be decannulated.Three patients were reported to have died.CONCLUSION NGT syndrome is an uncommon clinical complication of a very common clinical procedure.However,an under-reporting is possible because of misdiagnosis or lack of awareness among clinicians.Patients in early stages and with mild symptoms may be missed.Further,high variability in the presentation timing after NGT insertion makes diagnosis challenging.Early diagnosis and prompt removal of NGT may suffice in most patients,but a significant proportion of patients presenting with respiratory compromise may require tracheostomy for airway protection.
基金financially supported by the National Key R&D Program of China(Grant No.2020YFA0711802)the Wuhan Science and Technology Bureau of China(Grant No.2023020201010081)the National Nature Science Foundation of China(Grant No.U22A20239).
文摘The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing the Cardox tube.However,there is a lack of impact pressure testing of disposable tubes under real working conditions,selection of gas explosion design parameters,and systematic analysis of blasting vibration.This limitation has constrained the widespread application of disposable fracturing tubes in engineering.A joint monitoring of the pressure-time curves in the disposable tubes and boreholes was conducted.The rock-breaking effect of varying hole spacing parameters in the EFLCO_(2)design was analyzed,and a systematic study was carried out on the vibration peak value,frequency,and energy characteristics.The results show that(1)the pressure distribution characteristics,stress peak value,and duration in the disposable tubes are different from those of Cardox tubes,which show multi-peak distribution,low-pressure peak value,and short duration.The correlation between the pressure in the disposable tube,filling pressure,and liquid CO_(2)weight is established,and a theoretical calculation method for the borehole wall pressure is proposed;(2)The hole spacing in rocks of different hardness is suggested;and(3)At the same scale distance,the peak particle velocity(PPV)caused by EFLCO_(2)(PPVCO_(2))is significantly smaller than that caused by blasting(PPVexplosive).The ratio of PPVexplosive to PPVCO_(2)is a power function related to scale distance,and a distance-related zonality exist in this relationship.The frequency composition of the vibration signal caused by EFLCO_(2)is relatively simple with a narrow frequency band.Its PPV and energy are mainly concentrated in the low-frequency band.This research contributes to the optimization of disposable fracturing tubes,gas explosion design,and vibration hazard control.
基金supported by the National Natural Science Foundation of China(91963202,52072372,52372241,52232007,12325203)HFIPS Director’s Fund(BJPY2023A07,YZJJ-GGZX-2022-01).
文摘Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization.
文摘Thin-walled structures are widely used in cars due to their lightweight construction and energy-absorbing properties.However,issues such as high initial stress and lowenergy-absorbing efficiency arise.This study proposes a novel energy-absorbing structure inwhich a straight tube is combinedwith a conical tube and a bamboo-inspired bulkhead structure is introduced.This configuration allows the conical tube to flip outward first and then fold together with the straight tube.This deformation mode absorbs more energy and less peak force than the conical tube sinking and flipping inward.Through finite element numerical simulation,the specific energy absorption capacity of the structure is increased by 26%compared to that of a regular circular cross-section tube.Finally,the impact resistance of the bionic straight tapered tube structure is further improved through multi-objective optimization,promoting the engineering application and lightweight design of hybrid cross-section tubes.
基金supported by the Shenyang Science and Technology Program(grant number 22-301-1-10).
文摘The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of only finite element optimization.In this paper,the hydroforming process of 5A02 aluminum alloy variable diameter tube was as the research object.Fuzzy control was used to optimize the loading path,and the fuzzy rule base was established based on FEM.The minimum wall thickness and wall thickness reduction rate were determined as input membership functions,and the axial feeds variable value of the next step was used as output membership functions.The results show that the optimized loading path greatly improves the uniformity of wall thickness and the forming effect compared with the linear loading path.The round corner lamination rate of the tube is 91.2%under the fuzzy control optimized loading path,which was increased by 47.1%and 22.6%compared with linear loading Path 1 and Path 2,respectively.Based on the optimized loading path in the experiment,the minimum wall thickness of the variable diameter tube was 1.32 mm and the maximum thinning rate was 12.4%.The experimental results were consistent with the simulation results,which verified the accuracy of fuzzy control.The research results provide a reference for improving the forming quality of thin-walled tubes and plates.
文摘This study includes an experimental and numerical analysis of the performances of a parabolic trough collector(PTC)with and without cylindrical turbulators.The PTC is designed with dimensions of 2.00 m in length and 1.00 m in width.The related reflector is made of lined sheets of aluminum,and the tubes are made of stainless steel used for the absorption of heat.They have an outer diameter of 0.051 m and a wall thickness of 0.002 m.Water,used as a heat transfer fluid(HTF),flows through the absorber tube at a mass flow rate of 0.7 kg/s.The dimensions of cylindrical turbulators are 0.04 m in length and 0.047 m in diameter.Simulations are performed using the ANSYS Fluent 2020 R2 software.The PTC performance is evaluated by comparing the experimental and numerical outcomes,namely,the outlet temperature,useful heat,and thermal efficiency for a modified tube(MT)(tube with novel cylindrical turbulators)and a plain tube(PT)(tube without novel cylindrical turbulators).According to the results,the experimental outlet temperatures recorded 63.2°C and 50.5°C for the MT and PT,respectively.The heat gain reaches 1137.5 Win the MT and 685.8 Win the PT.Compared to the PT collector,the PTC exhibited a(1.64 times)higher efficiency.