Objective: Viral pharyngitis, commonly known as a sore throat, is a widespread condition affecting people of all ages globally. This study aimed to assess the effectiveness of a medical device containing the combined ...Objective: Viral pharyngitis, commonly known as a sore throat, is a widespread condition affecting people of all ages globally. This study aimed to assess the effectiveness of a medical device containing the combined drugs of natural essential oils (CDNEO) formulation in managing throat pain in patients with acute viral pharyngitis. With the growing resistance to traditional antibacterial treatments, essential oils have attracted interest for their potential analgesic, anti-inflammatory, and antibacterial properties. Results: The study involved 81 patients randomly divided into two groups: those taking a medical device containing combined drugs of natural essential oils (CDNEO) and those taking a placebo. A questionnaire was used to assess throat pain among the participants, with 45 receiving the CDNEO and 36 the placebo. The CDNEO group experienced a significant reduction in throat pain, with the average VAS score decreasing from 5.36 to 1.09, compared to the placebo group, which saw a decrease from 4.97 to 2.19. This difference, with p Conclusion: By using a double-blind research method, it was possible to evaluate the effectiveness of the oils more objectively, since there was also a control placebo group. The study shows that CDNEO significantly reduces throat pain and decreases the need for additional pain relief medication in patients with acute viral pharyngitis. The findings suggest that natural essential oils could serve as an alternative treatment for pharyngitis, particularly in efforts to minimize NSAID use and combat antibiotic resistance.展开更多
A set of techniques for well treatment aimed to enhance oil recovery are considered in the present study.These are based on the application of elastic waves of various types(dilation-wave,vibro-wave,or other acoustica...A set of techniques for well treatment aimed to enhance oil recovery are considered in the present study.These are based on the application of elastic waves of various types(dilation-wave,vibro-wave,or other acoustically induced effects).In such a context,a new technique is proposed to predict the effectiveness of the elastic-wave well treatment using the rank distribution according to Zipf’s law.It is revealed that,when the results of elastic wave well treatments are analyzed,groups of wells exploiting various geological deposits can differ in terms of their slope coefficients and free members.As the slope coefficient increases,the average increase in the well oil production rate(after the well treatment)becomes larger.An equation is obtained accordingly for estimating the slope coefficient in the Zipf’s equation from the frequency of the elastic wave.The obtained results demonstrate the applicability of the Zipf’s law in the analysis of the technological efficiency of elastic-wave well treatment methods.展开更多
To upgrade residual oil, the residual oil was subjected to ultrasonic treatment with an output of 800 W, at a temperature of 70 ℃ and at intervals ranging from 0 to 11 minutes. The experiment illustrated that 7 minut...To upgrade residual oil, the residual oil was subjected to ultrasonic treatment with an output of 800 W, at a temperature of 70 ℃ and at intervals ranging from 0 to 11 minutes. The experiment illustrated that 7 minutes of ultrasonic treatment reduced viscosity and carbon residue by 14.1% and 7.4%, respectively. This also produced an increase in saturates content and a decrease in the content of aromatics, resins and asphaltenes. Furthermore, the parameters of the average molecular structure were characterized by FT-IR, and ~1 H-NMR, while an increasingly greater change in the parameters were produced by an ultrasonic treatment interval of up to 7 minutes. The mechanical stirring and cavitation from ultrasonic treatment caused a series of changes in the molecules of residual oil. Microscopic changes affected the parameters of the average molecular structure, as usually shown in SARA fractions. The changes in the thermal reaction properties of residual oil after ultrasonic treatment were analyzed by thermogravimetry. As the ultrasonic treatment time increased, the apparent activation energy needed for pyrolysis decreased gradually, as did the temperature.展开更多
[Objectives]The research was to explore the antifungal effects of citronellal,wintergreen oil and their composite essence on Penicillium citrinum.[Methods]The inhibition zones of citronellal,wintergreen oil and their ...[Objectives]The research was to explore the antifungal effects of citronellal,wintergreen oil and their composite essence on Penicillium citrinum.[Methods]The inhibition zones of citronellal,wintergreen oil and their composite essence against P.citrinum were determined by disk diffusion method,and the growth of inhibition zone plate was observed.The fumigation fungicidal rate of fungi-bearing rice paper within 7 d was determined by plate counting method.[Results]Citronellal had strong antifungal effect,and wintergreen oil could slow down the growth rate of P.citrinum.The combination of citronellal and wintergreen oil had a synergistic effect.As fumigants,both citronellal and composite essence had fungicidal rates up to 100%within 7 d.Combined with anaerobic treatments,all the three essential oils could improve the fungicidal efficiency.The adsorbent in deoxidizing agent would adsorb the essential oils,so that their fumigation had a certain slow release effect.[Conclusions]This study can provide a more friendly and efficient method for the prevention and control of cultural relics mold.展开更多
Enhancement of oxidative stability of canola oil extracted from seed subjected to prior heat-treatment has been attributed to heat-induced generation of antioxidants from phenolic precursors occurring in canola seed. ...Enhancement of oxidative stability of canola oil extracted from seed subjected to prior heat-treatment has been attributed to heat-induced generation of antioxidants from phenolic precursors occurring in canola seed. Dispersion of aqueous extracts of intact seed oil bodies (OBs) in water is a novel and interesting way of producing natural and oxidatively stable food emulsions with minimal use of synthetic antioxidants and emulsifiers. As there is growing interest in natural food emulsions containing unsaturated oils, we investigated whether the oxidative stability of canola OB emulsions could be further improved by subjecting canola seed to heat-treatment prior to oil body extraction. Oil-in-water (5%, w/w) emulsions of OBs extracted from canola seed before and after heat-treatment were considerably more resistant to oxidation than emulsions prepared from refined canola oil and Tween? 40 emulsifier. However, only small amounts (0.9% - 4.5% by weight) of the phenolic compounds present in canola seed were transferred to the OBs after aqueous extraction, and consequently there was no discernible effect on oxidative stability as a result of prior heat-treatment of the seed. Thus, in contrast to oil, there is no oxidative stability benefit to be gained by subjecting canola seed to heat-treatment prior to extraction of OBs.展开更多
This paper investigated the effects of pre-heating treatment temperatures(T_(pre))on the flowability and wax deposition characteristics of a typical waxy crude oil after adding wax inhibitors.It is found that there is...This paper investigated the effects of pre-heating treatment temperatures(T_(pre))on the flowability and wax deposition characteristics of a typical waxy crude oil after adding wax inhibitors.It is found that there is little difference in wax precipitation exothermic characteristics of crude oils at different T_(pre),as well as the wax crystal solubility coefficient in the temperature range of 25-30℃.For the undoped crude oil,the flowability after wax precipitation gets much improved and the wax deposition is alleviated as T_(pre)increasing.At T_(pre)=50℃,the viscosity and wax deposition rate of crude oil adding wax inhibitors are higher than those of the undoped crude oil.When the T_(pre)increases to 60,70,and 80℃,the flowability of the doped crude oil are largely improved and the wax deposition is suppressed with the T_(pre)increase,but the wax content of wax deposit increases gradually.It is speculated that,on the one hand,the T_(pre)increase helps the dispersion of asphaltenes into smaller sizes,which facilitates the co-crystallization with paraffin waxes and generates more aggregated wax crystal flocs.This weakens the low-temperature gel structure and increases the solid concentration required for the crosslink to form the wax deposit.On the other hand,the decrease in viscosity increases the diffusion rate of wax molecules and accelerates the aging of wax deposits.The experimental results have important guiding significance for the pipeline transportation of doped crude oils.展开更多
Permeation of Cu(Ⅱ) from its aqueous solution through a supported liquid membrane (SLM) containing di(2-ethylhexyl)phosphoric acid (D2EHPA) carrier dissolved in coconut oil has been studied. The effects of C...Permeation of Cu(Ⅱ) from its aqueous solution through a supported liquid membrane (SLM) containing di(2-ethylhexyl)phosphoric acid (D2EHPA) carrier dissolved in coconut oil has been studied. The effects of Cu(Ⅱ), pH (in feed), H2SO4 (stripping) and D2EHPA (in membrane) concentrations have been investigated. The stability of the D2EHPA-coconut oil has also been evaluated. High Cu(Ⅱ) concentration in the feed leads to an increase in flux from 4.1 × 10^-9 to 8.9 × 10^-9 mol/(m^2·s) within the Cu(Ⅱ) concentration range 7.8×10^-4-78.6×10^-4 mol/L at pH of 4.0 in the feed and 12.4 × 10^-4 mol/L D2EHPA in the membrane phase. Increase in H2SO4 concentration in strip solution leads to an increase in copper ions flux up to 0.25 mol/L H2SO4, providing a maximum flux of 7.4 × 10^-9 mol/(m^2·s). The optimum conditions for Cu(Ⅱ) transport are, pH of feed 4.0, 0.25 mol/L H2SO4 in strip phase and 12.4 × 10^-4 mol/L D2EHPA (membrane) in 0.5 μm pore size polytetrafluoroethylene (PTFE) membrane. It has been observed that Cu(Ⅱ) flux across the membrane tends to increase with the concentration of copper ions. Application of the method developed to copper plating bath rinse solutions has been found to be successful in the recovery of Cu(Ⅱ).展开更多
The biological aerated filter (BAF) was used to treat the oil-field produced water. The removal efficiency for oil, COD, BOD and suspended solids (SS) was 76.3%-80.3%, 31.6%-57.9%, 8.6.3%-96.3% and76.4%--82.7%, re...The biological aerated filter (BAF) was used to treat the oil-field produced water. The removal efficiency for oil, COD, BOD and suspended solids (SS) was 76.3%-80.3%, 31.6%-57.9%, 8.6.3%-96.3% and76.4%--82.7%, respectively when the hydraulic loading rates varied from 016m·h^-1 to 1.4m·h^-1. The greatest partof removal, for example more than 80% of COD removal, occurred on the top 100cm of the media in BAF. The kinetic .performance of BAF indicated that the relationship of BOD removal efficiency with the hydraulic loadingrates, in biological aerated filters could be described by c1/c1=l-exp(-2.44/L^0.59). This equation could be used topredict the B OD.removal efficiency at different hydraulic loading rates.展开更多
The slightly polluted wastewater from oil refinery contains some COD, oil pollutants and suspended solids (SS). A small-scale fixed film biological aerated filter (BAF) process was used to treat the wastewater. Th...The slightly polluted wastewater from oil refinery contains some COD, oil pollutants and suspended solids (SS). A small-scale fixed film biological aerated filter (BAF) process was used to treat the wastewater. The influences of hydraulic retention time (HRT), air/water volume flow ratio and backwashing cycle on treatment efficiencies were investigated. The wastewater was treated by the BAF process under optimal conditions: the HRT of 1.0 h, the air/water volume flow ratio of about 5 : 1 and the backwashing cycle of every 4-7 days. The results showed that the average removal efficiency of COD, oil pollutants and SS was 84.5%, 94.0% and 83.4%, respectively. And the average effluent concentration of COD, oil pollutants and SS was 12.5, 0.27, 14.5 mg·L^-1, respectively. The experimental results demonstrated that the BAF process is a suitable and highly efficient method to treat the wastewater.展开更多
Oil storage is a source of volatile organic compounds( VOCs). Volatile organic compounds can cause different damages to the environment,animals and plants. Therefore, it is important to control the discharge of VOCs i...Oil storage is a source of volatile organic compounds( VOCs). Volatile organic compounds can cause different damages to the environment,animals and plants. Therefore, it is important to control the discharge of VOCs in oil storage. In this paper,the control technology of sources of VOCs pollution in oil storage was analyzed from the source,process and end treatment,and measures for the prevention and control of VOCs pollution in oil storage were proposed.展开更多
The sour gas sweetening is one of the main processes in gas industries. Gas sweetening is done through chemical processes. Therefore, it requires high cost and energy. The results show that increasing the operating te...The sour gas sweetening is one of the main processes in gas industries. Gas sweetening is done through chemical processes. Therefore, it requires high cost and energy. The results show that increasing the operating temperature increases the mass transfer coefficient and increases the mass transfer rate. Theoretical and experimental data show that sulfur removal in 4.5 W magnetic field is desirable. The increase in sulfur removal percentage in the magnetic field of 4.5 W and 6.75 W is about 16.4% and 15.2%, respectively. According to the obtained results, the effect of temperature increase from 18.8°C to 23.4°C is more evident than the effect of temperature change from 23.4°C to 32.2°C. Because more thermal energy is needed to provide higher temperatures. Therefore, the temperature of 23.4°C is reported as the optimal temperature. The results of this research show that the percentage of sulfur removal is also high at this temperature.展开更多
Oil palm currently occupies the largest acreage of farm land in Malaysia. In 2011, the production of palm oil in Malaysia was recorded as 19.8 million tons which has led to a huge amount of wastewater known as palm oi...Oil palm currently occupies the largest acreage of farm land in Malaysia. In 2011, the production of palm oil in Malaysia was recorded as 19.8 million tons which has led to a huge amount of wastewater known as palm oil mill effluent (POME). This work focuses on the ponding system which acts as wastewater treatment plant in order to treat POME. The conventional ponding system applied in mills consists of a series of seven ponds. The maintenance costs of the pond are expensive thus study of alternative methods is needed. POME treatment using zeolite shows a potential to overcome the problem. Samples collected from selected ponds are tested and analyzed using water analyzer method. Result from adsorption by zeolite shows a significant reduction of COD, BOD, Fe, Zn, Mn and turbidity. This shows that zeolite is highly potential to be applied as adsorbent in the POME treatment plants. The results here may lead to lower maintenance cost, lower quantity of treatment ponds and lesser land occupied for the treatment of POME in Malaysia.展开更多
A Constrained Interpolation Profile (CIP)-based model is developed to predict the mooring force of a two-dimensional floating oil storage tank under wave conditions, which is validated against to a newly performed e...A Constrained Interpolation Profile (CIP)-based model is developed to predict the mooring force of a two-dimensional floating oil storage tank under wave conditions, which is validated against to a newly performed experiment. In the experiment, a box-shaped floating oil storage apparatus is used. Computations are performed by an improved CIP-based Cartesian grid model, in which the THINC/SW scheme (THINC: tangent of hyperbola for interface capturing; SW: Slope Weighting), is used for interface capturing. A multiphase flow solver is adopted to treat the water-air-body interactions. The Immersed Boundary Method (IBM) is implemented to treat the body surface. Main attention is paid to the sum force of mooring line and velocity field around the body. It is found that the sum force of the mooring line increases with increasing wave amplitude. The body suffers from water wave impact and large body motions occur near the free surface. The vortex occurs near the sharp edge, i.e., the sharp bottom comers of the float- ing oil storage tank and the vortex shedding can be captured by the present numerical model. The present model could be further improved by including turbulence model which is currently under development. Comparison between the computational mooring forces and the measured mooring forces is presented with a reasonable agreement. The developed numerical model can predict the mooring line forces very well.展开更多
The effect of rare earths (RE) surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil-lubricated condition was investigated. Exper...The effect of rare earths (RE) surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil-lubricated condition was investigated. Experimental results revealed that RE treated CF reinforced PTFE (CF/PTFE) composite had the lowest friction coefficient and wear under various applied loads and sliding speeds compared with untreated and air-oxidated composites. X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that, after RE treatment, oxygen concentration increased obviously, and the amount of oxygen-containing groups on CF surfaces were largely increased. The increase in the amount of oxygen-containing groups enhanced interfacial adhesion between CF and PTFE matrix. With strong interfacial adhesion of the composite, stress could be effectively transmitted to carbon fibers; carbon fibers were strongly bonded with VITE matrix, and large scale rubbing-off of PTFE be prevented, therefore, tribological properties of the composite was improved.展开更多
The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inh...The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inhibitor SL-2, scale inhibitor HEDP, germicide 1227, and flocculant polyaluminium chloride PAC) on the stability of oilfield produced water. The influence of these treatment agents on oil-water interfacial properties and the mechanism of these agents acting on the oilfield produced water were studied by measuring the interfacial shear viscosity, interfacial tension and zeta electric potential. The results indicated that the scale inhibitor HEDP could increase the oil-water interfacial film strength, and it could also increase the absolute value of the zeta potential of oil droplets. HEDP played an important role in the stability of the emulsion. Polyaluminum chloride (PAC) reduced the stability of the emulsion by considerably decreasing the absolute value of the zeta potential of oil droplets. Corrosion inhibitor SL-2 and germicide 1227 could decrease the oil-water interfacial tension, whereas they had little influence on oil-water interfacial shear viscosity and oil-water interfacial electricity properties.展开更多
The waterproof and oil-repellent finishing of the dyed single-sided plain cotton fabric was carried out by two-dip and two-pad process. The influences of baking temperature (°C), baking time (min), concentrati...The waterproof and oil-repellent finishing of the dyed single-sided plain cotton fabric was carried out by two-dip and two-pad process. The influences of baking temperature (°C), baking time (min), concentration of finishing solution (g/L) and percentage of liquid on waterproof effect of fabric were analyzed;the influences of the contact angle and the baking temperature (°C), the baking time (min) and the concentration of the finishing agent (g/L) on the oil repellency of the fabric were investigated. The results showed that the best water-repellent finishing technology for cotton fabric was the concentration of finishing agent 30 g/L, the baking temperature 110°C, the baking time 1.5 min and the liquid-uptake 70%. The best oil-repellent finishing process for cotton fabric is 35 g/L for finishing agent, 150°C for baking temperature, and 1.5 min for baking time and pick up rate of 80%. After cotton fabric is treated with water-repellent and oil-repellent agent, the water-repellent contact angle of the fabric can reach 128°and the oil-repellent grade 6. The best finishing effect is obtained at this time. After the finishing agent acts on the surface of the fibre, the surface properties of the fibre can be changed, and the surface of the fibre can be changed from hydrophilicity to hydrophobicity. The finishing agent has good film-forming property, which makes the surface of cotton fibre smooth and has good waterproof and oil-repellent performance.展开更多
In this study the antioxidant activity of barley malt rootlet (BMR) extracts w</span><span style="font-family:"">as</span><span style="font-family:""> evaluated in...In this study the antioxidant activity of barley malt rootlet (BMR) extracts w</span><span style="font-family:"">as</span><span style="font-family:""> evaluated in heat treated corn oil up to 5 hours at 185</span><span style="font-family:"">°</span><span style="font-family:"">C frying temperature. The antioxidant activity </span><span style="font-family:"">of </span><span style="font-family:"">BMR extracts was measured at 25, 50, 100 and 150 ppm concentrations. The free and bound antioxidant phenolics were extracted from BMR using three different extraction methods. Conventional solvent extraction (CSE), microwave assisted extraction (MAE) and autoclave assisted pretreated solvent extraction (APSE). In the present experiment, the total phenolic content and antioxidant activity of the various extracts w</span><span style="font-family:"">ere</span><span style="font-family:""> measured. Thiobarbituric acid reactive substances (TBARS) assay was used to evaluate the ability of the BMR to protect lipid peroxidation in corn oil at 185</span><span style="font-family:"">°</span><span style="font-family:"">C frying temperature. The formation of TBARS at 5 hours of heat treated corn oil ha</span><span style="font-family:"">s</span><span style="font-family:""> shown similar antioxidant levels in 150 ppm butylated hydroxytoluene (BHT) or MAE free phenolic extract added to corn oil. TBARS value for BHT was 1.896 ± 0.013 μg/mL of corn oil and for MAE was 1.896 ± 0.034 μg/mL of corn oil. The highest level of antioxidant activity was found for the free phenolic extracts. The order of inhibition of oxidation was found to be for free phenolics as follows: BHT (100 ppm) > APSE (50 ppm) > MAE (100 ppm) > CSE (100 ppm).展开更多
A defect of chromatogram in a 35kV oil-immersed three-phase one-piece electric reactor in a 500kV substation。The initial analysis suggests that the defect is caused by the loose connection of the iron core magnet shi...A defect of chromatogram in a 35kV oil-immersed three-phase one-piece electric reactor in a 500kV substation。The initial analysis suggests that the defect is caused by the loose connection of the iron core magnet shield (magnet shield layer of iron core or earthling top). Examination of winding DC resistance, DGA and other relevant examinations were carried out to investigate the defect reasons., which is demonstrated by the dismantlement. In-depth study is taken and corresponding prevention measures are put forward in the paper.展开更多
A binary Mg-6Zn biodegradable alloy was solution treated to evaluate the effects of resulting microstructure changes on the alloy's degradation rate and mechanisms in-vitro. The treatment was conducted at 350 °C...A binary Mg-6Zn biodegradable alloy was solution treated to evaluate the effects of resulting microstructure changes on the alloy's degradation rate and mechanisms in-vitro. The treatment was conducted at 350 °C for 6-48 h. Optical and scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction were used to analyze the as-cast and treated samples. Immersion and electrochemical tests were performed in simulated body fluid at 37 °C to assess the samples corrosion resistance. To confirm the results of the corrosion tests, p H measurement was carried out. It is found that over 24 h solution treatment dissolves intermetallic phases in matrix and produces an almost single phase microstructure. Decreasing the intermetallic phases results in lower cathode/anode region ratios and lowers corrosion rates. The results of the electrochemical and mass loss tests reveal that extended solution treatment improves the corrosion resistance of the alloy. The results also show that solution at 350 °C for 24 h enhances the corrosion resistance of the as-cast alloy more than 60%. In addition, decreasing intermetallic phases in the microstructure accompanied a lower p H rise reduced corrosion rate. Solution treatment is suggested as a corrosion improving process for the application of Mg-Zn alloys as biodegradable implant materials.展开更多
文摘Objective: Viral pharyngitis, commonly known as a sore throat, is a widespread condition affecting people of all ages globally. This study aimed to assess the effectiveness of a medical device containing the combined drugs of natural essential oils (CDNEO) formulation in managing throat pain in patients with acute viral pharyngitis. With the growing resistance to traditional antibacterial treatments, essential oils have attracted interest for their potential analgesic, anti-inflammatory, and antibacterial properties. Results: The study involved 81 patients randomly divided into two groups: those taking a medical device containing combined drugs of natural essential oils (CDNEO) and those taking a placebo. A questionnaire was used to assess throat pain among the participants, with 45 receiving the CDNEO and 36 the placebo. The CDNEO group experienced a significant reduction in throat pain, with the average VAS score decreasing from 5.36 to 1.09, compared to the placebo group, which saw a decrease from 4.97 to 2.19. This difference, with p Conclusion: By using a double-blind research method, it was possible to evaluate the effectiveness of the oils more objectively, since there was also a control placebo group. The study shows that CDNEO significantly reduces throat pain and decreases the need for additional pain relief medication in patients with acute viral pharyngitis. The findings suggest that natural essential oils could serve as an alternative treatment for pharyngitis, particularly in efforts to minimize NSAID use and combat antibiotic resistance.
基金supported by the Government of Perm Krai,Research Project No.C-26/628 dated 05/04/2021.
文摘A set of techniques for well treatment aimed to enhance oil recovery are considered in the present study.These are based on the application of elastic waves of various types(dilation-wave,vibro-wave,or other acoustically induced effects).In such a context,a new technique is proposed to predict the effectiveness of the elastic-wave well treatment using the rank distribution according to Zipf’s law.It is revealed that,when the results of elastic wave well treatments are analyzed,groups of wells exploiting various geological deposits can differ in terms of their slope coefficients and free members.As the slope coefficient increases,the average increase in the well oil production rate(after the well treatment)becomes larger.An equation is obtained accordingly for estimating the slope coefficient in the Zipf’s equation from the frequency of the elastic wave.The obtained results demonstrate the applicability of the Zipf’s law in the analysis of the technological efficiency of elastic-wave well treatment methods.
文摘To upgrade residual oil, the residual oil was subjected to ultrasonic treatment with an output of 800 W, at a temperature of 70 ℃ and at intervals ranging from 0 to 11 minutes. The experiment illustrated that 7 minutes of ultrasonic treatment reduced viscosity and carbon residue by 14.1% and 7.4%, respectively. This also produced an increase in saturates content and a decrease in the content of aromatics, resins and asphaltenes. Furthermore, the parameters of the average molecular structure were characterized by FT-IR, and ~1 H-NMR, while an increasingly greater change in the parameters were produced by an ultrasonic treatment interval of up to 7 minutes. The mechanical stirring and cavitation from ultrasonic treatment caused a series of changes in the molecules of residual oil. Microscopic changes affected the parameters of the average molecular structure, as usually shown in SARA fractions. The changes in the thermal reaction properties of residual oil after ultrasonic treatment were analyzed by thermogravimetry. As the ultrasonic treatment time increased, the apparent activation energy needed for pyrolysis decreased gradually, as did the temperature.
基金National Key Research and Development Program of China(2020YFC1522500)Special Project of Technical Innovation and Application Development of Chongqing City(cstc2020jscx-msxmX0097)。
文摘[Objectives]The research was to explore the antifungal effects of citronellal,wintergreen oil and their composite essence on Penicillium citrinum.[Methods]The inhibition zones of citronellal,wintergreen oil and their composite essence against P.citrinum were determined by disk diffusion method,and the growth of inhibition zone plate was observed.The fumigation fungicidal rate of fungi-bearing rice paper within 7 d was determined by plate counting method.[Results]Citronellal had strong antifungal effect,and wintergreen oil could slow down the growth rate of P.citrinum.The combination of citronellal and wintergreen oil had a synergistic effect.As fumigants,both citronellal and composite essence had fungicidal rates up to 100%within 7 d.Combined with anaerobic treatments,all the three essential oils could improve the fungicidal efficiency.The adsorbent in deoxidizing agent would adsorb the essential oils,so that their fumigation had a certain slow release effect.[Conclusions]This study can provide a more friendly and efficient method for the prevention and control of cultural relics mold.
文摘Enhancement of oxidative stability of canola oil extracted from seed subjected to prior heat-treatment has been attributed to heat-induced generation of antioxidants from phenolic precursors occurring in canola seed. Dispersion of aqueous extracts of intact seed oil bodies (OBs) in water is a novel and interesting way of producing natural and oxidatively stable food emulsions with minimal use of synthetic antioxidants and emulsifiers. As there is growing interest in natural food emulsions containing unsaturated oils, we investigated whether the oxidative stability of canola OB emulsions could be further improved by subjecting canola seed to heat-treatment prior to oil body extraction. Oil-in-water (5%, w/w) emulsions of OBs extracted from canola seed before and after heat-treatment were considerably more resistant to oxidation than emulsions prepared from refined canola oil and Tween? 40 emulsifier. However, only small amounts (0.9% - 4.5% by weight) of the phenolic compounds present in canola seed were transferred to the OBs after aqueous extraction, and consequently there was no discernible effect on oxidative stability as a result of prior heat-treatment of the seed. Thus, in contrast to oil, there is no oxidative stability benefit to be gained by subjecting canola seed to heat-treatment prior to extraction of OBs.
基金The authors thank the financial support from the National Natural Science Foundation of China(51904327,U19B2012)China University of Petroleum Innovation Project(22CX06050A).
文摘This paper investigated the effects of pre-heating treatment temperatures(T_(pre))on the flowability and wax deposition characteristics of a typical waxy crude oil after adding wax inhibitors.It is found that there is little difference in wax precipitation exothermic characteristics of crude oils at different T_(pre),as well as the wax crystal solubility coefficient in the temperature range of 25-30℃.For the undoped crude oil,the flowability after wax precipitation gets much improved and the wax deposition is alleviated as T_(pre)increasing.At T_(pre)=50℃,the viscosity and wax deposition rate of crude oil adding wax inhibitors are higher than those of the undoped crude oil.When the T_(pre)increases to 60,70,and 80℃,the flowability of the doped crude oil are largely improved and the wax deposition is suppressed with the T_(pre)increase,but the wax content of wax deposit increases gradually.It is speculated that,on the one hand,the T_(pre)increase helps the dispersion of asphaltenes into smaller sizes,which facilitates the co-crystallization with paraffin waxes and generates more aggregated wax crystal flocs.This weakens the low-temperature gel structure and increases the solid concentration required for the crosslink to form the wax deposit.On the other hand,the decrease in viscosity increases the diffusion rate of wax molecules and accelerates the aging of wax deposits.The experimental results have important guiding significance for the pipeline transportation of doped crude oils.
文摘Permeation of Cu(Ⅱ) from its aqueous solution through a supported liquid membrane (SLM) containing di(2-ethylhexyl)phosphoric acid (D2EHPA) carrier dissolved in coconut oil has been studied. The effects of Cu(Ⅱ), pH (in feed), H2SO4 (stripping) and D2EHPA (in membrane) concentrations have been investigated. The stability of the D2EHPA-coconut oil has also been evaluated. High Cu(Ⅱ) concentration in the feed leads to an increase in flux from 4.1 × 10^-9 to 8.9 × 10^-9 mol/(m^2·s) within the Cu(Ⅱ) concentration range 7.8×10^-4-78.6×10^-4 mol/L at pH of 4.0 in the feed and 12.4 × 10^-4 mol/L D2EHPA in the membrane phase. Increase in H2SO4 concentration in strip solution leads to an increase in copper ions flux up to 0.25 mol/L H2SO4, providing a maximum flux of 7.4 × 10^-9 mol/(m^2·s). The optimum conditions for Cu(Ⅱ) transport are, pH of feed 4.0, 0.25 mol/L H2SO4 in strip phase and 12.4 × 10^-4 mol/L D2EHPA (membrane) in 0.5 μm pore size polytetrafluoroethylene (PTFE) membrane. It has been observed that Cu(Ⅱ) flux across the membrane tends to increase with the concentration of copper ions. Application of the method developed to copper plating bath rinse solutions has been found to be successful in the recovery of Cu(Ⅱ).
基金Supported by the National Natural Science Foundation of China (No.59978020).
文摘The biological aerated filter (BAF) was used to treat the oil-field produced water. The removal efficiency for oil, COD, BOD and suspended solids (SS) was 76.3%-80.3%, 31.6%-57.9%, 8.6.3%-96.3% and76.4%--82.7%, respectively when the hydraulic loading rates varied from 016m·h^-1 to 1.4m·h^-1. The greatest partof removal, for example more than 80% of COD removal, occurred on the top 100cm of the media in BAF. The kinetic .performance of BAF indicated that the relationship of BOD removal efficiency with the hydraulic loadingrates, in biological aerated filters could be described by c1/c1=l-exp(-2.44/L^0.59). This equation could be used topredict the B OD.removal efficiency at different hydraulic loading rates.
基金Supported by the Foundation of Science and Technology Project of Guangdong Province (2004B33301001)
文摘The slightly polluted wastewater from oil refinery contains some COD, oil pollutants and suspended solids (SS). A small-scale fixed film biological aerated filter (BAF) process was used to treat the wastewater. The influences of hydraulic retention time (HRT), air/water volume flow ratio and backwashing cycle on treatment efficiencies were investigated. The wastewater was treated by the BAF process under optimal conditions: the HRT of 1.0 h, the air/water volume flow ratio of about 5 : 1 and the backwashing cycle of every 4-7 days. The results showed that the average removal efficiency of COD, oil pollutants and SS was 84.5%, 94.0% and 83.4%, respectively. And the average effluent concentration of COD, oil pollutants and SS was 12.5, 0.27, 14.5 mg·L^-1, respectively. The experimental results demonstrated that the BAF process is a suitable and highly efficient method to treat the wastewater.
文摘Oil storage is a source of volatile organic compounds( VOCs). Volatile organic compounds can cause different damages to the environment,animals and plants. Therefore, it is important to control the discharge of VOCs in oil storage. In this paper,the control technology of sources of VOCs pollution in oil storage was analyzed from the source,process and end treatment,and measures for the prevention and control of VOCs pollution in oil storage were proposed.
文摘The sour gas sweetening is one of the main processes in gas industries. Gas sweetening is done through chemical processes. Therefore, it requires high cost and energy. The results show that increasing the operating temperature increases the mass transfer coefficient and increases the mass transfer rate. Theoretical and experimental data show that sulfur removal in 4.5 W magnetic field is desirable. The increase in sulfur removal percentage in the magnetic field of 4.5 W and 6.75 W is about 16.4% and 15.2%, respectively. According to the obtained results, the effect of temperature increase from 18.8°C to 23.4°C is more evident than the effect of temperature change from 23.4°C to 32.2°C. Because more thermal energy is needed to provide higher temperatures. Therefore, the temperature of 23.4°C is reported as the optimal temperature. The results of this research show that the percentage of sulfur removal is also high at this temperature.
文摘Oil palm currently occupies the largest acreage of farm land in Malaysia. In 2011, the production of palm oil in Malaysia was recorded as 19.8 million tons which has led to a huge amount of wastewater known as palm oil mill effluent (POME). This work focuses on the ponding system which acts as wastewater treatment plant in order to treat POME. The conventional ponding system applied in mills consists of a series of seven ponds. The maintenance costs of the pond are expensive thus study of alternative methods is needed. POME treatment using zeolite shows a potential to overcome the problem. Samples collected from selected ponds are tested and analyzed using water analyzer method. Result from adsorption by zeolite shows a significant reduction of COD, BOD, Fe, Zn, Mn and turbidity. This shows that zeolite is highly potential to be applied as adsorbent in the POME treatment plants. The results here may lead to lower maintenance cost, lower quantity of treatment ponds and lesser land occupied for the treatment of POME in Malaysia.
基金supported by the National Natural Science Foundation of China (51209184,51279186,51479175)
文摘A Constrained Interpolation Profile (CIP)-based model is developed to predict the mooring force of a two-dimensional floating oil storage tank under wave conditions, which is validated against to a newly performed experiment. In the experiment, a box-shaped floating oil storage apparatus is used. Computations are performed by an improved CIP-based Cartesian grid model, in which the THINC/SW scheme (THINC: tangent of hyperbola for interface capturing; SW: Slope Weighting), is used for interface capturing. A multiphase flow solver is adopted to treat the water-air-body interactions. The Immersed Boundary Method (IBM) is implemented to treat the body surface. Main attention is paid to the sum force of mooring line and velocity field around the body. It is found that the sum force of the mooring line increases with increasing wave amplitude. The body suffers from water wave impact and large body motions occur near the free surface. The vortex occurs near the sharp edge, i.e., the sharp bottom comers of the float- ing oil storage tank and the vortex shedding can be captured by the present numerical model. The present model could be further improved by including turbulence model which is currently under development. Comparison between the computational mooring forces and the measured mooring forces is presented with a reasonable agreement. The developed numerical model can predict the mooring line forces very well.
基金the National Natural Science Foundation of China (50275093)
文摘The effect of rare earths (RE) surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil-lubricated condition was investigated. Experimental results revealed that RE treated CF reinforced PTFE (CF/PTFE) composite had the lowest friction coefficient and wear under various applied loads and sliding speeds compared with untreated and air-oxidated composites. X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that, after RE treatment, oxygen concentration increased obviously, and the amount of oxygen-containing groups on CF surfaces were largely increased. The increase in the amount of oxygen-containing groups enhanced interfacial adhesion between CF and PTFE matrix. With strong interfacial adhesion of the composite, stress could be effectively transmitted to carbon fibers; carbon fibers were strongly bonded with VITE matrix, and large scale rubbing-off of PTFE be prevented, therefore, tribological properties of the composite was improved.
文摘The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inhibitor SL-2, scale inhibitor HEDP, germicide 1227, and flocculant polyaluminium chloride PAC) on the stability of oilfield produced water. The influence of these treatment agents on oil-water interfacial properties and the mechanism of these agents acting on the oilfield produced water were studied by measuring the interfacial shear viscosity, interfacial tension and zeta electric potential. The results indicated that the scale inhibitor HEDP could increase the oil-water interfacial film strength, and it could also increase the absolute value of the zeta potential of oil droplets. HEDP played an important role in the stability of the emulsion. Polyaluminum chloride (PAC) reduced the stability of the emulsion by considerably decreasing the absolute value of the zeta potential of oil droplets. Corrosion inhibitor SL-2 and germicide 1227 could decrease the oil-water interfacial tension, whereas they had little influence on oil-water interfacial shear viscosity and oil-water interfacial electricity properties.
文摘The waterproof and oil-repellent finishing of the dyed single-sided plain cotton fabric was carried out by two-dip and two-pad process. The influences of baking temperature (°C), baking time (min), concentration of finishing solution (g/L) and percentage of liquid on waterproof effect of fabric were analyzed;the influences of the contact angle and the baking temperature (°C), the baking time (min) and the concentration of the finishing agent (g/L) on the oil repellency of the fabric were investigated. The results showed that the best water-repellent finishing technology for cotton fabric was the concentration of finishing agent 30 g/L, the baking temperature 110°C, the baking time 1.5 min and the liquid-uptake 70%. The best oil-repellent finishing process for cotton fabric is 35 g/L for finishing agent, 150°C for baking temperature, and 1.5 min for baking time and pick up rate of 80%. After cotton fabric is treated with water-repellent and oil-repellent agent, the water-repellent contact angle of the fabric can reach 128°and the oil-repellent grade 6. The best finishing effect is obtained at this time. After the finishing agent acts on the surface of the fibre, the surface properties of the fibre can be changed, and the surface of the fibre can be changed from hydrophilicity to hydrophobicity. The finishing agent has good film-forming property, which makes the surface of cotton fibre smooth and has good waterproof and oil-repellent performance.
文摘In this study the antioxidant activity of barley malt rootlet (BMR) extracts w</span><span style="font-family:"">as</span><span style="font-family:""> evaluated in heat treated corn oil up to 5 hours at 185</span><span style="font-family:"">°</span><span style="font-family:"">C frying temperature. The antioxidant activity </span><span style="font-family:"">of </span><span style="font-family:"">BMR extracts was measured at 25, 50, 100 and 150 ppm concentrations. The free and bound antioxidant phenolics were extracted from BMR using three different extraction methods. Conventional solvent extraction (CSE), microwave assisted extraction (MAE) and autoclave assisted pretreated solvent extraction (APSE). In the present experiment, the total phenolic content and antioxidant activity of the various extracts w</span><span style="font-family:"">ere</span><span style="font-family:""> measured. Thiobarbituric acid reactive substances (TBARS) assay was used to evaluate the ability of the BMR to protect lipid peroxidation in corn oil at 185</span><span style="font-family:"">°</span><span style="font-family:"">C frying temperature. The formation of TBARS at 5 hours of heat treated corn oil ha</span><span style="font-family:"">s</span><span style="font-family:""> shown similar antioxidant levels in 150 ppm butylated hydroxytoluene (BHT) or MAE free phenolic extract added to corn oil. TBARS value for BHT was 1.896 ± 0.013 μg/mL of corn oil and for MAE was 1.896 ± 0.034 μg/mL of corn oil. The highest level of antioxidant activity was found for the free phenolic extracts. The order of inhibition of oxidation was found to be for free phenolics as follows: BHT (100 ppm) > APSE (50 ppm) > MAE (100 ppm) > CSE (100 ppm).
文摘A defect of chromatogram in a 35kV oil-immersed three-phase one-piece electric reactor in a 500kV substation。The initial analysis suggests that the defect is caused by the loose connection of the iron core magnet shield (magnet shield layer of iron core or earthling top). Examination of winding DC resistance, DGA and other relevant examinations were carried out to investigate the defect reasons., which is demonstrated by the dismantlement. In-depth study is taken and corresponding prevention measures are put forward in the paper.
基金the Ministry of Higher Education of Malaysia for the financial support (Vote No. Q.J130000.2524.04H18)Faculty of Mechanical Engineering of Universiti Teknologi Malaysia (UTM) for providing research facilities
文摘A binary Mg-6Zn biodegradable alloy was solution treated to evaluate the effects of resulting microstructure changes on the alloy's degradation rate and mechanisms in-vitro. The treatment was conducted at 350 °C for 6-48 h. Optical and scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction were used to analyze the as-cast and treated samples. Immersion and electrochemical tests were performed in simulated body fluid at 37 °C to assess the samples corrosion resistance. To confirm the results of the corrosion tests, p H measurement was carried out. It is found that over 24 h solution treatment dissolves intermetallic phases in matrix and produces an almost single phase microstructure. Decreasing the intermetallic phases results in lower cathode/anode region ratios and lowers corrosion rates. The results of the electrochemical and mass loss tests reveal that extended solution treatment improves the corrosion resistance of the alloy. The results also show that solution at 350 °C for 24 h enhances the corrosion resistance of the as-cast alloy more than 60%. In addition, decreasing intermetallic phases in the microstructure accompanied a lower p H rise reduced corrosion rate. Solution treatment is suggested as a corrosion improving process for the application of Mg-Zn alloys as biodegradable implant materials.