期刊文献+
共找到3,486篇文章
< 1 2 175 >
每页显示 20 50 100
Ecological network analysis reveals complex responses of tree species life stage interactions to stand variables
1
作者 Hengchao Zou Huayong Zhang Tousheng Huang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期29-43,共15页
Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16... Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16 LSINs in the mountainous forests of northwest Hebei,China based on crown overlap from four mixed forests with two dominant tree species.Our results show that LSINs decrease the complexity of stand densities and basal areas due to the interaction cluster differentiation.In addition,we found that mature trees and saplings play different roles,the first acting as“hub”life stages with high connectivity and the second,as“bridges”controlling information flow with high centrality.Across the forests,life stages with higher importance showed better parameter stability within LSINs.These results reveal that the structure of tree interactions among life stages is highly related to stand variables.Our efforts contribute to the understanding of LSIN complexity and provide a basis for further research on tree interactions in complex forest communities. 展开更多
关键词 tree interactions Life stages Interaction networks Ecological complexity
下载PDF
Brain Functional Network Based on Small-Worldness and Minimum Spanning Tree for Depression Analysis 被引量:1
2
作者 Bingtao Zhang Dan Wei +1 位作者 Yun Su Zhonglin Zhang 《Journal of Beijing Institute of Technology》 EI CAS 2023年第2期198-208,共11页
Since the outbreak and spread of corona virus disease 2019(COVID-19),the prevalence of mental disorders,such as depression,has continued to increase.To explore the abnormal changes of brain functional connections in p... Since the outbreak and spread of corona virus disease 2019(COVID-19),the prevalence of mental disorders,such as depression,has continued to increase.To explore the abnormal changes of brain functional connections in patients with depression,this paper proposes a depression analysis method based on brain function network(BFN).To avoid the volume conductor effect,BFN was constructed based on phase lag index(PLI).Then the indicators closely related to depression were selected from weighted BFN based on small-worldness(SW)characteristics and binarization BFN based on the minimum spanning tree(MST).Differences analysis between groups and correlation analysis between these indicators and diagnostic indicators were performed in turn.The resting state electroencephalogram(EEG)data of 24 patients with depression and 29 healthy controls(HC)was used to verify our proposed method.The results showed that compared with HC,the information processing of BFN in patients with depression decreased,and BFN showed a trend of randomization. 展开更多
关键词 DEPRESSION brain function network(BFN) small-worldness(SW) minimum spanning tree(MST)
下载PDF
Remaining Useful Life Prediction Method for Multi-Component System Considering Maintenance:Subsea Christmas Tree System as A Case Study 被引量:1
3
作者 WU Qi-bing CAI Bao-ping +5 位作者 FAN Hong-yan WANG Guan-nan RAO Xi GE Weifeng SHAO Xiao-yan LIU Yong-hong 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期198-209,共12页
Maintenance is an important technical measure to maintain and restore the performance status of equipment and ensure the safety of the production process in industrial production,and is an indispensable part of predic... Maintenance is an important technical measure to maintain and restore the performance status of equipment and ensure the safety of the production process in industrial production,and is an indispensable part of prediction and health management.However,most of the existing remaining useful life(RUL)prediction methods assume that there is no maintenance or only perfect maintenance during the whole life cycle;thus,the predicted RUL value of the system is obviously lower than its actual operating value.The complex environment of the system further increases the difficulty of maintenance,and its maintenance nodes and maintenance degree are limited by the construction period and working conditions,which increases the difficulty of RUL prediction.An RUL prediction method for a multi-omponent system based on the Wiener process considering maintenance is proposed.The performance degradation model of components is established by a dynamic Bayesian network as the initial model,which solves the uncertainty of insufficient data problems.Based on the experience of experts,the degree of degradation is divided according to Poisson process simulation random failure,and different maintenance strategies are used to estimate a variety of condition maintenance factors.An example of a subsea tree system is given to verify the effectiveness of the proposed method. 展开更多
关键词 remaining useful life Wiener process dynamic Bayesian networks maintenance subsea Christmas tree system
下载PDF
基于TREE-LSTM算法的船舶汽轮机组变负荷故障诊断
4
作者 王灏桐 李彦军 +1 位作者 杨龙滨 史建新 《舰船科学技术》 北大核心 2024年第17期110-115,共6页
针对船舶汽轮机组变负荷过程故障诊断中的耦合参数时序特征难以捕捉以及正常参数变动的干扰等问题,引入TREE-LSTM神经网络模型以实现复杂非线性系统动态数据分类。首先建立某船舶汽轮机组仿真模型,分析并进行故障仿真;随后进行数据预处... 针对船舶汽轮机组变负荷过程故障诊断中的耦合参数时序特征难以捕捉以及正常参数变动的干扰等问题,引入TREE-LSTM神经网络模型以实现复杂非线性系统动态数据分类。首先建立某船舶汽轮机组仿真模型,分析并进行故障仿真;随后进行数据预处理与特征工程;最后训练TREE-LSTM模型进行故障诊断,并与SVM、LSTM等模型进行比较。TREE-LSTM模型对于船舶汽轮机组变负荷过程的故障诊断正确率为98.7%,正确率最高。由于引入时间序列与复杂神经网络拓扑结构,TREE-LSTM在处理非线性系统动态数据分类问题时效果更好。 展开更多
关键词 汽轮机组 动态仿真 故障诊断 树形长短时记忆网络
下载PDF
基于深度哈希与VP-Tree的快速图像检索方法
5
作者 吴宗胜 李红 薛茹 《西南民族大学学报(自然科学版)》 CAS 2024年第5期544-553,共10页
针对高维特征图像检索中的精度和速度挑战,提出了一种结合深度哈希技术和VP-Tree索引的快速图像检索方法.该方法首先设计了一个轻量级的深度卷积编码网络,并在网络中引入了卷积块注意力模块和空间金字塔池化技术,以增强特征提取能力;然... 针对高维特征图像检索中的精度和速度挑战,提出了一种结合深度哈希技术和VP-Tree索引的快速图像检索方法.该方法首先设计了一个轻量级的深度卷积编码网络,并在网络中引入了卷积块注意力模块和空间金字塔池化技术,以增强特征提取能力;然后通过该网络模型将图像数据集中每幅图像的高维特征转化为二进制哈希编码,并与其对应的图像编号组成一个哈希表;接着使用所有图像的哈希编码来构建一个VP-Tree,在执行图像检索时将使用待查询图像的哈希编码从VP-Tree中快速找到与其距离最近的节点;最后根据这些节点的哈希值从哈希表中取出对应的结果图像.实验结果表明,所提方法在保持高检索精度的同时显著提升了检索速度(在MNIST、FASHION-MNIST和CIFAR-10上的检索速度分别提高了24.17、8.61和4.01倍). 展开更多
关键词 图像检索 深度哈希 卷积神经网络 VP-tree
下载PDF
Verifying hierarchical network nonlocality in general quantum networks
6
作者 杨舒媛 侯晋川 贺衎 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期199-208,共10页
Recently, a class of innovative notions on quantum network nonlocality(QNN), called full quantum network nonlocality(FQNN), have been proposed in Phys. Rev. Lett. 128 010403(2022). As the generalization of full networ... Recently, a class of innovative notions on quantum network nonlocality(QNN), called full quantum network nonlocality(FQNN), have been proposed in Phys. Rev. Lett. 128 010403(2022). As the generalization of full network nonlocality(FNN), l-level quantum network nonlocality(l-QNN) was defined in arxiv. 2306.15717 quant-ph(2024). FQNN is a NN that can be generated only from a network with all sources being non-classical. This is beyond the existing standard network nonlocality, which may be generated from a network with only a non-classical source. One of the challenging tasks is to establish corresponding Bell-like inequalities to demonstrate the FQNN or l-QNN. Up to now, the inequality criteria for FQNN and l-QNN have only been established for star and chain networks. In this paper, we devote ourselves to establishing Bell-like inequalities for networks with more complex structures. Note that star and chain networks are special kinds of tree-shaped networks. We first establish the Bell-like inequalities for verifying l-QNN in k-forked tree-shaped networks. Such results generalize the existing inequalities for star and chain networks. Furthermore, we find the Bell-like inequality criteria for l-QNN for general acyclic and cyclic networks. Finally, we discuss the demonstration of l-QNN in the well-known butterfly networks. 展开更多
关键词 full network nonlocality hierarchical network nonlocality tree network
下载PDF
Graph Convolutional Networks Embedding Textual Structure Information for Relation Extraction
7
作者 Chuyuan Wei Jinzhe Li +2 位作者 Zhiyuan Wang Shanshan Wan Maozu Guo 《Computers, Materials & Continua》 SCIE EI 2024年第5期3299-3314,共16页
Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,... Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous. 展开更多
关键词 Relation extraction graph convolutional neural networks dependency tree dynamic structure attention
下载PDF
Predicting Users’ Latent Suicidal Risk in Social Media: An Ensemble Model Based on Social Network Relationships
8
作者 Xiuyang Meng Chunling Wang +3 位作者 Jingran Yang Mairui Li Yue Zhang Luo Wang 《Computers, Materials & Continua》 SCIE EI 2024年第6期4259-4281,共23页
Suicide has become a critical concern,necessitating the development of effective preventative strategies.Social media platforms offer a valuable resource for identifying signs of suicidal ideation.Despite progress in ... Suicide has become a critical concern,necessitating the development of effective preventative strategies.Social media platforms offer a valuable resource for identifying signs of suicidal ideation.Despite progress in detecting suicidal ideation on social media,accurately identifying individuals who express suicidal thoughts less openly or infrequently poses a significant challenge.To tackle this,we have developed a dataset focused on Chinese suicide narratives from Weibo’s Tree Hole feature and introduced an ensemble model named Text Convolutional Neural Network based on Social Network relationships(TCNN-SN).This model enhances predictive performance by leveraging social network relationship features and applying correction factors within a weighted linear fusion framework.It is specifically designed to identify key individuals who can help uncover hidden suicidal users and clusters.Our model,assessed using the bespoke dataset and benchmarked against alternative classification approaches,demonstrates superior accuracy,F1-score and AUC metrics,achieving 88.57%,88.75%and 94.25%,respectively,outperforming traditional TextCNN models by 12.18%,10.84%and 10.85%.We assert that our methodology offers a significant advancement in the predictive identification of individuals at risk,thereby contributing to the prevention and reduction of suicide incidences. 展开更多
关键词 Suicide risk prediction social media social network relationships Weibo tree Hole deep learning
下载PDF
Machine Learning Models for Heterogenous Network Security Anomaly Detection
9
作者 Mercy Diligence Ogah Joe Essien +1 位作者 Martin Ogharandukun Monday Abdullahi 《Journal of Computer and Communications》 2024年第6期38-58,共21页
The increasing amount and intricacy of network traffic in the modern digital era have worsened the difficulty of identifying abnormal behaviours that may indicate potential security breaches or operational interruptio... The increasing amount and intricacy of network traffic in the modern digital era have worsened the difficulty of identifying abnormal behaviours that may indicate potential security breaches or operational interruptions. Conventional detection approaches face challenges in keeping up with the ever-changing strategies of cyber-attacks, resulting in heightened susceptibility and significant harm to network infrastructures. In order to tackle this urgent issue, this project focused on developing an effective anomaly detection system that utilizes Machine Learning technology. The suggested model utilizes contemporary machine learning algorithms and frameworks to autonomously detect deviations from typical network behaviour. It promptly identifies anomalous activities that may indicate security breaches or performance difficulties. The solution entails a multi-faceted approach encompassing data collection, preprocessing, feature engineering, model training, and evaluation. By utilizing machine learning methods, the model is trained on a wide range of datasets that include both regular and abnormal network traffic patterns. This training ensures that the model can adapt to numerous scenarios. The main priority is to ensure that the system is functional and efficient, with a particular emphasis on reducing false positives to avoid unwanted alerts. Additionally, efforts are directed on improving anomaly detection accuracy so that the model can consistently distinguish between potentially harmful and benign activity. This project aims to greatly strengthen network security by addressing emerging cyber threats and improving their resilience and reliability. 展开更多
关键词 Cyber-Security network Anomaly Detection Machine Learning Random Forest Decision tree Gaussian Naive Bayes
下载PDF
Dynamic load balancing based on restricted multicast tree in triplet-based hierarchical interconnection network
10
作者 刘滨 石峰 +2 位作者 高玉金 计卫星 宋红 《Journal of Southeast University(English Edition)》 EI CAS 2008年第1期33-37,共5页
To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve ... To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve the efficiency of interchanging load information, is presented. To support the algorithm, a complete set of DLB messages and a schema of maintaining DLB information in each processing node are designed. The load migration request messages from the heavily loaded node (HLN)are spread along an MT whose root is the HLN. And the lightly loaded nodes(LLNs) covered by the MT are the candidate destinations of load migration; the load information interchanged between the LLNs and the HLN can be transmitted along the MT. So the HLN can migrate excess loads out as many as possible during a one time execution of the THINDLBA, and its load state can be improved as quickly as possible. To avoid wrongly transmitted or redundant DLB messages due to MT overlapping, the MT construction is restricted in the design of the THINDLBA. Through experiments, the effectiveness of four DLB algorithms are compared, and the results show that the THINDLBA can effectively decrease the time costs of THIN systems in dealing with large scale computeintensive tasks more than others. 展开更多
关键词 triplet-based hierarchical interconnection network dynamic load balancing multicast tree
下载PDF
Core-based Shared Tree Multicast Routing Algorithms for LEO Satellite IP Networks 被引量:6
11
作者 Cheng Lianzhen Zhang Jun Liu Kai 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第4期353-361,共9页
A new core-based shared tree algorithm, viz core-cluster combination-based shared tree (CCST) algorithm and the weighted version (i.e. w-CCST algorithm) are proposed in order to resolve the channel resources waste... A new core-based shared tree algorithm, viz core-cluster combination-based shared tree (CCST) algorithm and the weighted version (i.e. w-CCST algorithm) are proposed in order to resolve the channel resources waste problem in typical source-based multicast routing algorithms in low earth orbit (LEO) satellite IP networks. The CCST algorithm includes the dynamic approximate center (DAC) core selection method and the core-cluster combination multicast route construction scheme. Without complicated onboard computation, the DAC method is uniquely developed for highly dynamic networks of periodical and regular movement. The core-cluster combination method takes core node as the initial core-cluster, and expands it stepwise to construct an entire multicast tree at the lowest tree cost by a shortest path scheme between the newly-generated core-cluster and surplus group members, which results in great bandwidth utilization. Moreover, the w-CCST algorithm is able to strike a balance between performance of tree cost and that of end-to-end propagation delay by adjusting the weighted factor to meet strict end-to-end delay requirements of some real-time multicast services at the expense of a slight increase in tree cost. Finally, performance comparison is conducted between the proposed algorithms and typical algorithms in LEO satellite IP networks. Simulation results show that the CCST algorithm significantly decreases the average tree cost against to the others, and also the average end-to-end propagation delay ofw-CCST algorithm is lower than that of the CCST algorithm. 展开更多
关键词 satellite IP networks LEO multicast routing shared tree CORE
下载PDF
Assessing the performance of decision tree and neural network models in mapping soil properties 被引量:6
12
作者 Fatemeh HATEFFARD Payam DOLATI +1 位作者 Ahmad HEIDARI Ali Asghar ZOLFAGHARI 《Journal of Mountain Science》 SCIE CSCD 2019年第8期1833-1847,共15页
To build any spatial soil database, a set of environmental data including digital elevation model(DEM) and satellite images beside geomorphic landscape description are essentials. Such a database, integrates field obs... To build any spatial soil database, a set of environmental data including digital elevation model(DEM) and satellite images beside geomorphic landscape description are essentials. Such a database, integrates field observations and laboratory analyses data with the results obtained from qualitative and quantitative models. So far, various techniques have been developed for soil data processing. The performance of Artificial Neural Network(ANN) and Decision Tree(DT) models was compared to map out some soil attributes in Alborz Province, Iran. Terrain attributes derived from a DEM along with Landsat 8 ETM+, geomorphology map, and the routine laboratory analyses of the studied area were used as input data. The relationships between soil properties(including sand, silt, clay, electrical conductivity, organic carbon, and carbonates) and the environmental variables were assessed using the Pearson Correlation Coefficient and Principle Components Analysis. Slope, elevation, geomforms, carbonate index, stream network, wetness index, and the band’s number 2, 3, 4, and 5 were the most significantly correlated variables. ANN and DT did not show the same accuracy in predicting all parameters. The DT model showed higher performances in estimating sand(R^2=0.73), silt(R^2=0.70), clay(R^2=0.72), organic carbon(R^2=0.71), and carbonates(R^2=0.70). While the ANN model only showed higher performance in predicting soil electrical conductivity(R^2=0.95). The results showed that determination the best model to use, is dependent upon the relation between the considered soil properties with the environmental variables. However, the DT model showed more reasonable results than the ANN model in this study. The results showed that before using a certain model to predict variability of all soil parameters, it would be better to evaluate the efficiency of all possible models for choosing the best fitted model for each property. In other words, most of the developed models are sitespecific and may not be applicable to use for predicting other soil properties or other area. 展开更多
关键词 Digital SOIL MAPPING SOIL properties environmental VARIABLES Artificial Neural network DECISION tree
下载PDF
Fetal distress prediction using discriminant analysis, decision tree, and artificial neural network 被引量:7
13
作者 Mei-Ling Huang Yung-Yan Hsu 《Journal of Biomedical Science and Engineering》 2012年第9期526-533,共8页
Fetal distress is one of the main factors to cesarean section in obstetrics and gynecology. If the fetus lack of oxygen in uterus, threat to the fetal health and fetal death could happen. Cardiotocography (CTG) is the... Fetal distress is one of the main factors to cesarean section in obstetrics and gynecology. If the fetus lack of oxygen in uterus, threat to the fetal health and fetal death could happen. Cardiotocography (CTG) is the most widely used technique to monitor the fetal health and fetal heart rate (FHR) is an important index to identify occurs of fetal distress. This study is to propose discriminant analysis (DA), decision tree (DT), and artificial neural network (ANN) to evaluate fetal distress. The results show that the accuracies of DA, DT and ANN are 82.1%, 86.36% and 97.78%, respectively. 展开更多
关键词 FETAL DISTRESS CARDIOTOCOGRAPHY (CTG) DISCRIMINANT Analysis Decision tree Artificial Neural network
下载PDF
FPGA-Based Network Traffic Security: Design and Implementation Using C5.0 Decision Tree Classifier 被引量:2
14
作者 Tarek Salah Sobh Mohamed Ibrahiem Amer 《Journal of Electronic Science and Technology》 CAS 2013年第4期393-403,共11页
In this work, a hardware intrusion detection system (IDS) model and its implementation are introduced to perform online real-time traffic monitoring and analysis. The introduced system gathers some advantages of man... In this work, a hardware intrusion detection system (IDS) model and its implementation are introduced to perform online real-time traffic monitoring and analysis. The introduced system gathers some advantages of many IDSs: hardware based from implementation point of view, network based from system type point of view, and anomaly detection from detection approach point of view. In addition, it can detect most of network attacks, such as denial of services (DOS), leakage, etc. from detection behavior point of view and can detect both internal and external intruders from intruder type point of view. Gathering these features in one IDS system gives lots of strengths and advantages of the work. The system is implemented by using field programmable gate array (FPGA), giving a more advantages to the system. A C5.0 decision tree classifier is used as inference engine to the system and gives a high detection ratio of 99.93%. 展开更多
关键词 C5.0 decision tree field programm-able gate array network monitoring network security.
下载PDF
A Clustering-tree Topology Control Based on the Energy Forecast for Heterogeneous Wireless Sensor Networks 被引量:7
15
作者 Zhen Hong Rui Wang Xile Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第1期68-77,共10页
How to design an energy-efficient algorithm to maximize the network lifetime in complicated scenarios is a critical problem for heterogeneous wireless sensor networks (HWSN). In this paper, a clustering-tree topology ... How to design an energy-efficient algorithm to maximize the network lifetime in complicated scenarios is a critical problem for heterogeneous wireless sensor networks (HWSN). In this paper, a clustering-tree topology control algorithm based on the energy forecast (CTEF) is proposed for saving energy and ensuring network load balancing, while considering the link quality, packet loss rate, etc. In CTEF, the average energy of the network is accurately predicted per round (the lifetime of the network is denoted by rounds) in terms of the difference between the ideal and actual average residual energy using central limit theorem and normal distribution mechanism, simultaneously. On this basis, cluster heads are selected by cost function (including the energy, link quality and packet loss rate) and their distance. The non-cluster heads are determined to join the cluster through the energy, distance and link quality. Furthermore, several non-cluster heads in each cluster are chosen as the relay nodes for transmitting data through multi-hop communication to decrease the load of each cluster-head and prolong the lifetime of the network. The simulation results show the efficiency of CTEF. Compared with low-energy adaptive clustering hierarchy (LEACH), energy dissipation forecast and clustering management (EDFCM) and efficient and dynamic clustering scheme (EDCS) protocols, CTEF has longer network lifetime and receives more data packets at base station. © 2014 Chinese Association of Automation. 展开更多
关键词 ALGORITHMS Clustering algorithms Cost functions Energy dissipation Energy efficiency Forecasting Information management Low power electronics network management Normal distribution Packet loss Quality control Telecommunication networks TOPOLOGY trees (mathematics)
下载PDF
Nucleus accumbens-linked executive control networks mediating reversal learning in tree shrew brain 被引量:2
16
作者 Ting-Ting Pan Chao Liu +9 位作者 De-Min Li Bin-Bin Nie Tian-Hao Zhang Wei Zhang Shi-Lun Zhao Qi-Xin Zhou Hua Liu Gao-Hong Zhu Lin Xu Bao-Ci Shan 《Zoological Research》 SCIE CAS CSCD 2022年第4期528-531,共4页
DEAR EDITOR,Cognitive flexibility is crucial for animal survival but is frequently impaired in neuropsychiatric disorders.Although many brain structures and functional networks are involved in cognitive flexibility,th... DEAR EDITOR,Cognitive flexibility is crucial for animal survival but is frequently impaired in neuropsychiatric disorders.Although many brain structures and functional networks are involved in cognitive flexibility,the neural mechanisms underlying cooperation among specific functional networks remain unclear from a global perspective.In this study,[^(18)F]-fluorodeoxyglucose positron emission tomography(FDG-PET)was performed on 19 male tree shrews after four different visual discrimination tasks,including baseline,learning expert(LE),reversal naive(RN),and reversal expert(RE). 展开更多
关键词 networkS EDIT tree
下载PDF
Spanning tree-based algorithm for hydraulic simulation of large-scale water supply networks 被引量:1
17
作者 Huan-feng DUAN Guo-ping YU 《Water Science and Engineering》 EI CAS 2010年第1期23-35,共13页
With the purpose of making calculation more efficient in practical hydraulic simulations, an improved algorithm was proposed and was applied in the practical water distribution field. This methodology was developed by... With the purpose of making calculation more efficient in practical hydraulic simulations, an improved algorithm was proposed and was applied in the practical water distribution field. This methodology was developed by expanding the traditional loop-equation theory through utilization of the advantages of the graph theory in efficiency. The utilization of the spanning tree technique from graph theory makes the proposed algorithm efficient in calculation and simple to use for computer coding. The algorithms for topological generation and practical implementations are presented in detail in this paper. Through the application to a practical urban system, the consumption of the CPU time and computation memory were decreased while the accuracy was greatly enhanced compared with the present existing methods. 展开更多
关键词 large-scale networks hydraulic simulation graph theory fundamental loop spanning tree EFFICIENCY
下载PDF
Using junction trees for structural learning of Bayesian networks 被引量:1
18
作者 Mingmin Zhu Sanyang Liu +1 位作者 Youlong Yang Kui Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期286-292,共7页
The learning Bayesian network (BN) structure from data is an NP-hard problem and still one of the most exciting chal- lenges in the machine learning. In this work, a novel algorithm is presented which combines ideas... The learning Bayesian network (BN) structure from data is an NP-hard problem and still one of the most exciting chal- lenges in the machine learning. In this work, a novel algorithm is presented which combines ideas from local learning, constraint- based, and search-and-score techniques in a principled and ef- fective way. It first reconstructs the junction tree of a BN and then performs a K2-scoring greedy search to orientate the local edges in the cliques of junction tree. Theoretical and experimental results show the proposed algorithm is capable of handling networks with a large number of variables. Its comparison with the well-known K2 algorithm is also presented. 展开更多
关键词 Bayesian network (BN) junction tree scoring function structural learning conditional independence.
下载PDF
A new approach for effectively determining fracture network connec- tions in fractured rocks using R tree indexing 被引量:2
19
作者 LIU Hua-mei WANG Ming-yu SONG Xian-feng 《Journal of Coal Science & Engineering(China)》 2011年第4期401-407,共7页
Determinations of fracture network connections would help the investigators remove those "meaningless" no-flow-passing fractures, providing an updated and more effective fracture network that could considerably impr... Determinations of fracture network connections would help the investigators remove those "meaningless" no-flow-passing fractures, providing an updated and more effective fracture network that could considerably improve the computation efficiency in the pertinent numerical simulations of fluid flow and solute transport. The effective algorithms with higher computational efficiency are needed to accomplish this task in large-scale fractured rock masses. A new approach using R tree indexing was proposed for determining fracture connection in 3D stochastically distributed fracture network. By com- paring with the traditional exhaustion algorithm, it was observed that from the simulation results, this approach was much more effective; and the more the fractures were investigated, the more obvious the advantages of the approach were. Furthermore, it was indicated that the runtime used for creating the R tree indexing has a major part in the total of the runtime used for calculating Minimum Bounding Rectangles (MBRs), creating the R tree indexing, precisely finding out fracture intersections, and identifying flow paths, which are four important steps to determine fracture connections. This proposed approach for the determination of fracture connections in three-dimensional fractured rocks are expected to provide efficient preprocessing and critical database for practically accomplishing numerical computation of fluid flow and solute transport in large-scale fractured rock masses. 展开更多
关键词 fracture network connection fractured rooks R tree indexing
下载PDF
Classes of tree-based networks 被引量:1
20
作者 Mareike Fischer Michelle Galla +2 位作者 Lina Herbst Yangjing Long Kristina Wicke 《Visual Computing for Industry,Biomedicine,and Art》 2020年第1期104-129,共26页
Recently,so-called tree-based phylogenetic networks have attracted considerable attention.These networks can be constructed from a phylogenetic tree,called the base tree,by adding additional edges.The primary aim of t... Recently,so-called tree-based phylogenetic networks have attracted considerable attention.These networks can be constructed from a phylogenetic tree,called the base tree,by adding additional edges.The primary aim of this study is to provide sufficient criteria for tree-basedness by reducing phylogenetic networks to related graph structures.Even though it is generally known that determining whether a network is tree-based is an NP-complete problem,one of these criteria,namely edge-basedness,can be verified in linear time.Surprisingly,the class of edgebased networks is closely related to a well-known family of graphs,namely,the class of generalized series-parallel graphs,and we explore this relationship in full detail.Additionally,we introduce further classes of tree-based networks and analyze their relationships. 展开更多
关键词 Phylogenetic tree Phylogenetic network tree-based network Edge-based network Chordal network Hamilton connected Hamiltonian path Generalized series-parallel graphs Series-parallel graphs
下载PDF
上一页 1 2 175 下一页 到第
使用帮助 返回顶部