In this work, the potential of natural and pretreated palm tree trunk (PTT) as agents for adsorption of an organic dye, 2,6-dichlorophenolindophenol (2,6-DCPIP) from aqueous solutions was probed. Natural and acetic ac...In this work, the potential of natural and pretreated palm tree trunk (PTT) as agents for adsorption of an organic dye, 2,6-dichlorophenolindophenol (2,6-DCPIP) from aqueous solutions was probed. Natural and acetic acid treated PTT were characterized by Fourier transform infrared (FT-IR) spectroscopy and by the point of zero charge (pzc). The biosorption of 2,6-DCPIP was investigated in batch mode using natural and treated PTT. This study was achieved by highlighting several parameters such as the contact time, biosorbents dosage, the initial concentration of 2,6-DCPIP, the pH of the solution, the ionic strength and the interfering ions. The results showed that 2,6-DCPIP was successfully adsorbed from aqueous solutions by natural and treated PTT. The equilibrium was attained after 40 minutes for treated PTT and 20 minutes for natural PTT. The maximum capacity of adsorption was obtained at pH = 2. The adsorption isotherms were investigated and it was found that the experimental data were best described by the Dubinin-Radushkevich isotherm for the natural PTT (R2 = 0.979) and by the Temkin isotherm for the treated PTT (R2 = 0.976). The maximum adsorption capacities determined by Langmuir isotherm were found as 108.932 and 157.233 μmol·g–1 for natural and treated PTT, respectively. The adsorption kinetics was analyzed and was best described by the pseudo-second order model (R2 ≥ 0.998). The diffusion mechanism was studied and the result showed that external mass transfer is the main rate controlling step. The desorption of 2,6-DCPIP is favorable in alkaline medium.展开更多
In this work we determine the physical and mechanical properties of local composites reinforced with papaya trunk fibers (FTP) on one hand and particles of the hulls of the kernels of the garlic (PCNFA) in the other h...In this work we determine the physical and mechanical properties of local composites reinforced with papaya trunk fibers (FTP) on one hand and particles of the hulls of the kernels of the garlic (PCNFA) in the other hand. The samples are produced according to BSI 2782 standards;by combining fibers and untreated to polyester matrix following the contact molding method. We notice that the long fibers of papaya trunks improve the tensile/compression characteristics of composites by 45.44% compared to pure polyester;while the short fibers improve the flexural strength of composites by 62.30% compared to pure polyester. Furthermore, adding fibers decreases the density of the final composite material and the rate of water absorption increases with the size of the fibers. As regards composite materials with particle reinforcement from the cores of the winged fruits, the particle size (fine ≤ 800 μm and large ≤ 1.6 mm) has no influence on the Young’s modulus and on the rate of water absorption. On the other hand, fine particles improve the flexural strength of composite materials by 53.08% compared to pure polyester;fine particles increase the density by 19% compared to the density of pure polyester.展开更多
To determine the age of oil-tea camellia trees, regression equations including Logistic, Mitscherlich, Gompertz, Korf, and Richards were used to calculate accumulative growth rate using basal trunk disc and investigat...To determine the age of oil-tea camellia trees, regression equations including Logistic, Mitscherlich, Gompertz, Korf, and Richards were used to calculate accumulative growth rate using basal trunk disc and investigate the relations between the age of oil-tea camellia trees and their growth rate of secondary trunk. The Gompertz equation Y=71.296 1exp (-3.874 4exp (-0.006 4t)) was the most optimal equation to simulate the accumulative growth rate of basal trunk disc. This equation could be used to estimate the age of oil-tea camellia trees that grow under similar environmental conditions. The Korf equation Y=576.900 1exp (-4.153 0x -0.314 2 ) was the best equation to describe the relation between the age and growth rate of different secondary trunks. With the adjustment coefficient and average growth of different secondary trunk discs, it is possible to predict the age of ancient oil-tea camellia trees that grow under similar environmental conditions. In addition, taking three or more discs from the same diameter group and calculating their average growth rate could lead to more accurate results. For trees that grow in different areas, environmental conditions should be carefully considered when using the above two equations to predict the age of ancient oil-tea camellia trees.展开更多
针对采摘机器人自主行走导航过程中,难以准确定位其与果树之间的相对位置,难以准确估计果树树干姿态的问题,提出基于双目eye in hand系统的多角度树干位姿估计方法。利用YOLOv5深度学习方法与半全局块匹配算法识别树干并生成局部点云;...针对采摘机器人自主行走导航过程中,难以准确定位其与果树之间的相对位置,难以准确估计果树树干姿态的问题,提出基于双目eye in hand系统的多角度树干位姿估计方法。利用YOLOv5深度学习方法与半全局块匹配算法识别树干并生成局部点云;利用半径滤波和体素滤波减少树干点云数据;利用闭环式手眼标定方法对双目eye in hand系统进行标定,并对同一树干多角度相机位置的点云数据进行拼接;利用随机抽样一致(RANSAC)算法与无约束最小二乘法估计并优化树干的位置和姿态,获取树干的圆柱体参数。通过对30幅标定板图像进行实验,闭环式手眼标定方法的平均欧式误差为3.7177 mm;采用半径滤波和体素滤波可减少98.470%的点云数据;采用RANSAC算法、圆柱体估计算法拟合树干点云数据,得到圆柱体的半径r=41.2771 mm,R_(MAE)=2.57156 mm,R_(RMSE)=2.98936 mm;无约束最小二乘法优化后r=39.4028 mm,R_(MAE)=1.98955 mm,R_(RMSE)=2.46588 mm。该文通过对双目eye in hand系统进行标定,建立坐标系转换关系,多角度采集环境信息,准确定位机器人与果树之间的相对位置,估计果树树干的姿态。展开更多
文摘In this work, the potential of natural and pretreated palm tree trunk (PTT) as agents for adsorption of an organic dye, 2,6-dichlorophenolindophenol (2,6-DCPIP) from aqueous solutions was probed. Natural and acetic acid treated PTT were characterized by Fourier transform infrared (FT-IR) spectroscopy and by the point of zero charge (pzc). The biosorption of 2,6-DCPIP was investigated in batch mode using natural and treated PTT. This study was achieved by highlighting several parameters such as the contact time, biosorbents dosage, the initial concentration of 2,6-DCPIP, the pH of the solution, the ionic strength and the interfering ions. The results showed that 2,6-DCPIP was successfully adsorbed from aqueous solutions by natural and treated PTT. The equilibrium was attained after 40 minutes for treated PTT and 20 minutes for natural PTT. The maximum capacity of adsorption was obtained at pH = 2. The adsorption isotherms were investigated and it was found that the experimental data were best described by the Dubinin-Radushkevich isotherm for the natural PTT (R2 = 0.979) and by the Temkin isotherm for the treated PTT (R2 = 0.976). The maximum adsorption capacities determined by Langmuir isotherm were found as 108.932 and 157.233 μmol·g–1 for natural and treated PTT, respectively. The adsorption kinetics was analyzed and was best described by the pseudo-second order model (R2 ≥ 0.998). The diffusion mechanism was studied and the result showed that external mass transfer is the main rate controlling step. The desorption of 2,6-DCPIP is favorable in alkaline medium.
文摘In this work we determine the physical and mechanical properties of local composites reinforced with papaya trunk fibers (FTP) on one hand and particles of the hulls of the kernels of the garlic (PCNFA) in the other hand. The samples are produced according to BSI 2782 standards;by combining fibers and untreated to polyester matrix following the contact molding method. We notice that the long fibers of papaya trunks improve the tensile/compression characteristics of composites by 45.44% compared to pure polyester;while the short fibers improve the flexural strength of composites by 62.30% compared to pure polyester. Furthermore, adding fibers decreases the density of the final composite material and the rate of water absorption increases with the size of the fibers. As regards composite materials with particle reinforcement from the cores of the winged fruits, the particle size (fine ≤ 800 μm and large ≤ 1.6 mm) has no influence on the Young’s modulus and on the rate of water absorption. On the other hand, fine particles improve the flexural strength of composite materials by 53.08% compared to pure polyester;fine particles increase the density by 19% compared to the density of pure polyester.
基金Supported by Hunan Forestry Science and Technology Project(XLK201707)
文摘To determine the age of oil-tea camellia trees, regression equations including Logistic, Mitscherlich, Gompertz, Korf, and Richards were used to calculate accumulative growth rate using basal trunk disc and investigate the relations between the age of oil-tea camellia trees and their growth rate of secondary trunk. The Gompertz equation Y=71.296 1exp (-3.874 4exp (-0.006 4t)) was the most optimal equation to simulate the accumulative growth rate of basal trunk disc. This equation could be used to estimate the age of oil-tea camellia trees that grow under similar environmental conditions. The Korf equation Y=576.900 1exp (-4.153 0x -0.314 2 ) was the best equation to describe the relation between the age and growth rate of different secondary trunks. With the adjustment coefficient and average growth of different secondary trunk discs, it is possible to predict the age of ancient oil-tea camellia trees that grow under similar environmental conditions. In addition, taking three or more discs from the same diameter group and calculating their average growth rate could lead to more accurate results. For trees that grow in different areas, environmental conditions should be carefully considered when using the above two equations to predict the age of ancient oil-tea camellia trees.
文摘针对采摘机器人自主行走导航过程中,难以准确定位其与果树之间的相对位置,难以准确估计果树树干姿态的问题,提出基于双目eye in hand系统的多角度树干位姿估计方法。利用YOLOv5深度学习方法与半全局块匹配算法识别树干并生成局部点云;利用半径滤波和体素滤波减少树干点云数据;利用闭环式手眼标定方法对双目eye in hand系统进行标定,并对同一树干多角度相机位置的点云数据进行拼接;利用随机抽样一致(RANSAC)算法与无约束最小二乘法估计并优化树干的位置和姿态,获取树干的圆柱体参数。通过对30幅标定板图像进行实验,闭环式手眼标定方法的平均欧式误差为3.7177 mm;采用半径滤波和体素滤波可减少98.470%的点云数据;采用RANSAC算法、圆柱体估计算法拟合树干点云数据,得到圆柱体的半径r=41.2771 mm,R_(MAE)=2.57156 mm,R_(RMSE)=2.98936 mm;无约束最小二乘法优化后r=39.4028 mm,R_(MAE)=1.98955 mm,R_(RMSE)=2.46588 mm。该文通过对双目eye in hand系统进行标定,建立坐标系转换关系,多角度采集环境信息,准确定位机器人与果树之间的相对位置,估计果树树干的姿态。