Tree-ring width(RW),density,elemental com-position,and stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)are widely used as proxies to assess climate change,ecology,and environmental pollution;however,a specific pret...Tree-ring width(RW),density,elemental com-position,and stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)are widely used as proxies to assess climate change,ecology,and environmental pollution;however,a specific pretreat-ment has been needed for each proxy.Here,we developed a method by which each proxy can be measured in the same sample.First,the sample is polished for ring width meas-urement.After obtaining the ring width data,the sample is cut to form a 1-mm-thick wood plate.The sample is then mounted in a vertical sample holder,and gradually scanned by an X-ray beam.Simultaneously,the count rates of the fluorescent photons of elements(for chemical characteriza-tion)and a radiographic grayscale image(for wood density)are obtained,i.e.the density and the element content are obtained.Then,cellulose is isolated from the 1-mm wood plate by removal of lignin,and hemicellulose.After producing this cellulose plate,cellulose subsamples are separated by knife under the microscope for inter-annual and intra-annual stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)analysis.Based on this method,RW,density,elemental composition,δ^(13)C,and δ^(18)O can be measured from the same sample,which reduces sample amount and treatment time,and is helpful for multi-proxy comparison and combination research.展开更多
1 Background THE C<sub>i</sub>/C<sub>a</sub>, the ratio of intercellular and ambient C0<sub>2</sub> partial pressure, is internally controlled by thestomatal conductance and assimil...1 Background THE C<sub>i</sub>/C<sub>a</sub>, the ratio of intercellular and ambient C0<sub>2</sub> partial pressure, is internally controlled by thestomatal conductance and assimilation rate, and is externally affected by the atmospheric CO<sub>2</sub> concentration and climate changes. C<sub>i</sub>/C<sub>a</sub> can be only estimated by the isotopic fractionation equation of Farquchar. However, this method is limited by the very little observation of atmospheric δ<sup>13</sup> C before1980. Leavitt had to interpolate the atmospheric δ<sup>13</sup> C by means of the polynomial. A geochemicalmethod to model C<sub>i</sub>/C<sub>a</sub> by tree-ring δ<sup>13</sup>C has been developed to reduce the dependence. By the estimated tree-ring C<sub>i</sub>/ C<sub>a</sub>, the authors here discuss C0<sub>2</sub> and water exchanges between the atmosphere and biosphere that greatly influence the climate展开更多
Silver fir(Abies alba Mill.)is a flexible European tree species,mainly vegetating within the mountainous regions of Europe,but its growth responses across its latitudinal and longitudinal range have not yet been satis...Silver fir(Abies alba Mill.)is a flexible European tree species,mainly vegetating within the mountainous regions of Europe,but its growth responses across its latitudinal and longitudinal range have not yet been satisfactorily verified under changing environmental conditions.This study describes the tree-ring increment of silver fir in research plots across a latitudinal gradient from the northern range in Czechia(CZ),through Croatia(HR)to the southernmost range in Italy(IT).The research aims to analyze in detail the dynamics and cyclicity of the ringwidth index(RWI)and how it relates to climatic factors(temperature and precipitation),the North Atlantic Oscillation(NAO),and total solar irradiance(TSI),including the determination of latitude.The results show that the main drivers affecting fir growth are the seasonal NAO index and TSI.Monthly temperatures affect RWI early in the vegetation season,while lack of precipitation during the summer is a limiting factor for fir growth,especially in July.Seasonal temperatures and temperatures in June and July negatively impact,while seasonal precipitation totals in the same months positively influence the RWI in all research plots across meridian.The longest growth cycles in fir RWI were recorded in the northernmost studied plots in CZ.These cyclical fluctuations recede approaching the south.The cyclic increase in RWI is related to the TSI,which decreases its effect from north to south.The TSI's effects vary,positively impacting CZ but negatively influencing HR while remaining relatively neutral in IT.On the other hand,seasonal NAO tends to negatively affect silver fir growth in HR and CZ but has a mildly positive effect in IT.In conclusion,the TSI and the influence of the seasonal NAO index are prevalent in the fir RWI and are accompanied by a greater cyclicity of RWI in Central Europe(temperature optimum)than in the Italian Mediterranean region,where this tree species is limited by climatic conditions,especially lack of precipitation.展开更多
Based on the cross-dated tree-ring samples collected from the middle Qilian Moun- tain, a standard ring-width chronology had been developed, which covered the period AD 1000 to 2000. The correlations between the chron...Based on the cross-dated tree-ring samples collected from the middle Qilian Moun- tain, a standard ring-width chronology had been developed, which covered the period AD 1000 to 2000. The correlations between the chronology and climatic records from the nearby meteorological stations indicated that temperature was the dominant climatic factor for tree growth at upper timberline, and the most important climatic factor for the tree growth in the area was the mean temperature from previous December to current April. The temperature variations recovered from the ring-width data showed a cold period during the “Little Ice Age” and the con- tinuous warming during the twentieth century. Comparison between the ring-width chronology and δ18O records from the Dunde ice core in the Qilian Mountain indicated that there was a con- sistent trend in both time series. A significant correlation existed between our ring-width chro- nology and the Northern Hemispheric temperature, suggesting that the climate changes in the Qilian Mountain were not only driven by regional factors, but also responsive to the global cli- mate.展开更多
The ring-width chronology of a Juniperus przewalskii tree from the middle of the Qilian Mountain was constructed to estimate the annual precipitation (from previous August to current July) since AD 1480.The reconstruc...The ring-width chronology of a Juniperus przewalskii tree from the middle of the Qilian Mountain was constructed to estimate the annual precipitation (from previous August to current July) since AD 1480.The reconstruction showed four major alternations of drying and wetting over the past 521 years.The rainy 16th century was followed by persistent drought in the 17th century.Moreover,relatively wet conditions persisted from the 18th to the beginning of 20th century until the recurrence of a drought during the 1920s and 1930s.Based on the Empirical Mode Decomposition method,eight Intrinsic Mode Functions (IMFs) were extracted,each representing unique fluctuations of the reconstructed precipitation in the time-frequency domain.The high amplitudes of IMFs on different timescales were often consistent with the high amount of precipitation,and vice versa.The IMF of the lowest frequency indicated that the precipitation has undergone a slow increasing trend over the past 521 years.The 2-3 year and 5-8 year time-scales reflected the characteristics of inter-annual variability in precipitation relevant to regional atmospheric circulation and the El Ni?o-Southern Oscillation (ENSO),respectively.The 10-13 year scale of IMF may be associated with changing solar activity.Specifically,an amalgamation of previous and present data showed that droughts were likely to be a historically persistent feature of the Earth's climate,whereas the probability of intensified rainfall events seemed to increase during the course of the 19th and 20th centuries.These changing characteristics in precipitation indicate an unprecedented alteration of the hydrological cycle,with unknown future amplitude.Our reconstruction complements existing information on past precipitation changes in the Qilian Mountain,and provides additional low-frequency information not previously available.展开更多
The variation of the tree-ring's index of a platycladus orientalis at the Mausoleum of Emperor Huang and of a long series of sunspots relative number during AD1470-1974 are analyzed by using the wavelet power spec...The variation of the tree-ring's index of a platycladus orientalis at the Mausoleum of Emperor Huang and of a long series of sunspots relative number during AD1470-1974 are analyzed by using the wavelet power spectrum method,and their variation characters are also discussed. It is determined that the tree-ring's variation has cycles of approximate 2-7,11,93 and 150 a. Two data series are used for analyzing sunspot relative number(SSN) variation. First,the analysis of the annual average SSN during AD1700-1974 proved that variation cycles are about 11,50,and 93 a; then,the data during AD1465-1975 obtained from the decadal average SSN train over 7000 a reconstructed on the geomagnetic data is analyzed and its variation cycles are about 50,90,and 160 a. Besides the tree-rings cycle of 2-7 a is commonly considered to be related to ENSO,while 11 a cycle is related to solar Schwabe cycle; in addition,it is possible that the cycles of 90 and150 a are likely to be related to solar Gleissberg cycle and Suess cycle. The correlations between them are possibly due to the effect of solar activity on the climate and additionally on the tree's growth.展开更多
The Tongbai Mountains is an ecologically sensi-tive region and the northern boundary of Pinus massoniana Lamb.To analyze the effect of different microenvironments on tree growth response to climate factors,we develope...The Tongbai Mountains is an ecologically sensi-tive region and the northern boundary of Pinus massoniana Lamb.To analyze the effect of different microenvironments on tree growth response to climate factors,we developed standard chronologies for earlywood width(EWW),late-wood width(LWW),and total ring width(TRW)of P.massoniana at two sampling sites on slopes with different orientations,then analyzed characteristics of the chronolo-gies and their correlations with climate variables from five stations in the region and with a regional normalized differ-ence vegetation index(NDVI).Statistical results showed that the TRW/EWW/LWW chronology consistency and charac-teristics(mean sensitivity,signal to noise ratio,expressed population signal)for trees growing on the southeastern slope were much higher than for trees on the northeastern slope.Correlations indicated that temperature in current March and August has a significant positive effect on TRW/EWW/LWW formation,and the effect on the northeastern slope was weaker than on the southeastern slope.Compared to temperature,precipitation has more complicated effects on tree growth,but the effect on the northeastern slope was also generally weaker than on the southeastern slope.Step-wise linear regression analyses showed that temperature in August was the main limiting factor at the two sampling sites.Similarly,the response of tree growth on the southeast-ern slope as determined by the NDVI is better than on the northeastern slope,and the TRW/EWW/LWW chronologies for the southeastern slope explained over 50%of the total NDVI variances in June.Overall,the results indicate that the difference in the climate response of P.massoniana at two sampling sites is clearly caused by differences in the microenvironment,and such differences should be properly considered in future studies of forest dynamics and climate reconstructions.展开更多
Tree-ring chronologies were developed for Sabina saltuaria and Abies faxoniana in mixed forests in the Qionglai Mountains of the eastern Tibetan Plateau.Climate-growth relationship analysis indicated that the two co-e...Tree-ring chronologies were developed for Sabina saltuaria and Abies faxoniana in mixed forests in the Qionglai Mountains of the eastern Tibetan Plateau.Climate-growth relationship analysis indicated that the two co-exist-ing species reponded similarly to climate factors,although S.saltuaria was more sensitive than A.faxoniana.The strong-est correlation was between S.saltuaria chronology and regional mean temperatures from June to November.Based on this relationship,a regional mean temperature from June to November for the period 1605-2016 was constructed.Reconstruction explained 37.3%of the temperature variance during th period 1961-2016.Six major warm periods and five major cold periods were identified.Spectral analysis detected significant interannual and multi-decadal cycles.Reconstruction also revealed the influence of the Atlantic Multi-decadal Oscillation,confirming its importance on climate change on the eastern Tibetan Plateau.展开更多
Changes in annual radial growth is an important indication of climate change. Dendroclimatology studies in northern China have focused on linear statistical analysis,but lacking studies based on the process of ring fo...Changes in annual radial growth is an important indication of climate change. Dendroclimatology studies in northern China have focused on linear statistical analysis,but lacking studies based on the process of ring formation to clarify the radial growth of trees. Tree-ring width standard chronology(STD) was established using samples of Larix principis-rupprechtii collected at 2303 m altitude on Luya Mountain. Using the Vaganov-Shashkin(VS) model to simulate growth and development, the internal physiological mechanism of radial growth is identified. It was concluded that:(1) the growing season of L. principis-rupprechtii was May to September;(2) soil moisture was a significant factor in the early and late growing seasons, and temperature was the dominant factor in its main growth period;and(3) formation of narrow ring widths was closely related to drought stress, the development of wide ring widths will be restricted by increasing future temperatures. The VS model is applicable for radial growth simulation of subalpine coniferous forests and for guiding the cultivation of local tree species in the future.展开更多
Existing streamflow reconstructions based on tree-ring analysis mostly rely on species from upland,mainly montane areas,while lowland species(generally plain)areas are rarely used.This limits the understanding of stre...Existing streamflow reconstructions based on tree-ring analysis mostly rely on species from upland,mainly montane areas,while lowland species(generally plain)areas are rarely used.This limits the understanding of streamflow change history in the lowlands,which is an important basis for water resource management.This study focused on Populus euphratica stands located along the main stream,eastern and western tributaries in the lower reaches of the Heihe River basin(HRb),in arid northwestern China.We investigated how streamflow regulation interferes with ripar-ian trees in lowlands when they used for streamflow recon-struction.Tree-ring width chronologies were developed and analyzed in conjunction with meteorological and hydrologic observation data.The results show streamflow regulation leads in sharp fluctuations in the streamflow allocation between the eastern tributaries and western tributaries.This resulted in instability of the correlation between streamflow at the two tributaries and at the Zhengyixia hydrologic station,with corresponding fluctuations in radial growth of poplar trees on the banks of the two tributaries and at the station.Streamflow regulation altered the natural patterns of seasonal streamflow below the station,changing the time window of poplar response.This study provides useful insight into tree-ring width based streamflow reconstruction in the lowlands.展开更多
Extreme droughts are anticipated to have detrimental impacts on forest ecosystems,especially in water-limited regions,due to the influence of climate change.However,considerable uncertainty remains regarding the patte...Extreme droughts are anticipated to have detrimental impacts on forest ecosystems,especially in water-limited regions,due to the influence of climate change.However,considerable uncertainty remains regarding the patterns in species-specific responses to extreme droughts.Here,we conducted a study integrating dendrochronology and remote sensing methods to investigate the mosaic-distributed maple-oak(native)natural forests and poplar plantations(introduced)in the Horqin Sandy Land,Northeast China.We assessed the impacts of extreme droughts on tree performances by measuring interannual variations in radial growth and vegetation index.The results showed that precipitation and self-calibrated palmer drought severity index(scPDSI)are the major factors influencing tree-ring width index(RWI)and normalized difference vegetation index(NDVI).The severe droughts between 2000 and 2004 resulted in reduced RWI in the three studied tree species as well as led to NDVI reductions in both the maple-oak natural forests and the poplar plantations.The RWI reached the nadir during the2000-2004 severe droughts and remained at low levels two years after the severe drought,creating a legacy effect.In contrast to the lack of significant correlation between RWI and scPDSI,NDVI exhibited a significant positive correlation with scPDSI indicating the greater sensitivity of canopy performance to droughts than radial growth.Furthermore,interspecific differences in RWI and NDVI responses were observed,with the fast-growing poplar species experiencing a more significant RWI decrease and more negative NDVI anomaly during severe droughts than native species,highlighting the species-specific trade-offs between drought resilience and growth rate.This study emphasizes the importance of combining tree-level radial growth with landscape-scale canopy remote sensing to understand forest resilience and response.Our study improves our understanding of forest responses to extreme drought and highlights species differences in climate responses,offering crucial insights for optimizing species selection in sustainable afforestation and forest management in water-limited regions under the influence of climate change.展开更多
Minimum temperatures have remarkable impacts on tree growth at high-elevation sites on the Tibetan Plateau,but the shortage of long-term and high-resolution paleoclimate records inhibits understanding of recent minimu...Minimum temperatures have remarkable impacts on tree growth at high-elevation sites on the Tibetan Plateau,but the shortage of long-term and high-resolution paleoclimate records inhibits understanding of recent minimum temperature anomalies.In this study,a warm season(April–September)reconstruction is presented for the past 467 years(1550–2016)based on Sabina tibetica ring-width chronology on the Lianbaoyeze Mountain of the central eastern Tibetan Plateau.Eight warm periods and eight cold periods were identified.Long-term minimum temperature variations revealed a high degree of coherence with nearby reconstructions.Spatial correlations between our reconstruction and global sea surface temperatures suggest that warm season minimum temperature anomalies in the central eastern Tibetan Plateau were strongly influenced by large-scale ocean atmospheric circulations,such as the El Ni?o-Southern Oscillation and the Atlantic Multidecadal Oscillation.展开更多
Based on 120 stem discs collected during3 months of fieldwork along a 12 km route,the history of fires in the Wari Maro Forest(09 1000 N–02 1000E) over the past century in savanna woodland and dry forest was recons...Based on 120 stem discs collected during3 months of fieldwork along a 12 km route,the history of fires in the Wari Maro Forest(09 1000 N–02 1000E) over the past century in savanna woodland and dry forest was reconstituted.Three major ecological areas are characterized:one highly burnt zone located between two relative less burnt areas.By analyzing tree rings,246 fire scars were identified.The scars were caused by 51 fire years,occurring at a mean interval of 2.23 years.From 1890 to1965,only 6 years with fires were recorded from sampled trees.Since 1966,no year has passed without fire.The fire frequency point scale reached 14 years.This was the case of Burkea africana,which has been identified as a species tolerant to fire and could be planted to create a natural firewall.In contrast,Anogeissus leiocarpa is highly sensitive to fire,and in a dry forest ecosystem that burns seasonally,it requires a special conservation plan.Two new concepts are described:the rebarking of trees after fire and Mean Kilometer Fire Interval.The first concept was tested with Daniellia oliveri(Rolfe) Hutch & Dalz trees,and the second concept was used to evaluate spatial fire distribution.We demonstrate that savanna woodland and dry forest were subject to a degradation process caused by destructive fires related to vegetation cover clearance and illegal logging.展开更多
Reconstructing the hydrological change based on dendrohydrological data has important implications for understanding the dynamic distribution and evolution pattern of a given river. The widespread, long-living conifer...Reconstructing the hydrological change based on dendrohydrological data has important implications for understanding the dynamic distribution and evolution pattern of a given river. The widespread, long-living coniferous forests on the Altay Mountains provide a good example for carrying out the dendrohydrological studies. In this study, a regional composite tree-ring width chronology developed by Lariat sibirica Ledeb. and Picea obovata Ledeb. was used to reconstruct a 301-year annual (from preceding July to succeeding June) streamflow for the Haba River, which originates in the southern Altay Mountains, Xinjiang, China. Results indicated that the reconstructed streamflow series and the observations were fitting well, and explained 47.5% of the variation in the observed streamflow of 1957-2008. Moreover, floods and droughts in 1949-2000 were precisely captured by the streamflow reconstruction. Based on the frequencies of the wettest/driest years and decades, we identified the 19th century as the century with the largest occurrence of hydrological fluctuations for the last 300 years. After applying a 21-year moving average, we found five wet (1724-1758, 1780-1810, 1822-1853, 1931-1967, and 1986-2004) and four dry (1759-1779, 1811-1821, 1854-1930, and 1968-1985) periods in the streamflow reconstruction. Furthermore, four periods (1770-1796, 1816-1836, 1884-1949, and 1973-1997) identified by the streamflow series had an obvious increasing trend. The increasing trend of streamflow since the 1970s was the biggest in the last 300 years and coincided with the recent warming-wetting trend in northwestern China. A significant correlation between streamflow and precipitation in the Altay Mountains indicated that the streamflow reconstruction contained not only local, but also broad-scale, hydro-climatic signals. The 24-year, 12-year, and 2.2-4.5-year cycles of the reconstruction revealed that the streamflow variability of the Haba River may be influenced by solar activity and the atmosphere-ocean system.展开更多
Tree-ring standardized chronologies are developed by 78 cores collected from the eastern and western Helan Mountain. Statistical analysis shows that both the STD and RES chronologies correlate negatively with the temp...Tree-ring standardized chronologies are developed by 78 cores collected from the eastern and western Helan Mountain. Statistical analysis shows that both the STD and RES chronologies correlate negatively with the temperature of different periods of early half year, especially with January to August mean (JA) temperature, which means that JA temperature is one of the predominant limiting factors of tree growth in the Helan Mountain. Based on this analysis, we reconstructed JA temperature, and the explained variance is 43.3% (F=21.422, p〈0.001 ). The comparatively high temperature periods in the reconstruction were: 1805-1818 1828-1857, 1899-1907, 1919-1931 and 1968-1995; and the comparatively low temperatu re periods happened in 1858-1872, 1883-1895 and 1935-1953. Ten-year moving average curve shows three slow uplifting trends: 1766-1853, 1862-1931 and 1944-1995. Each temperature increase was followed by a sudden temperature decrease about 10 years, that is to say, the JA temperature in the Helan Mountain is characterized by slow increase and sudden decrease. The 70- and 10.77-year periodicities detected in the temperature series correspond to the Gleissberg (80-year) and Schwabe (11-year) periodicities of solar activity respectively, the 2.11-2.62 years cycles are considered to be influenced by QBO (Quasi-Biennial-Oscillation) and the local environmental change.展开更多
Tree-ring width chronologies of Larix chinensis were developed from the northern and southern slopes of the Qinling Mountains in Shaanxi Province,and climatic factors affecting the tree-ring widths of L.chinensis were...Tree-ring width chronologies of Larix chinensis were developed from the northern and southern slopes of the Qinling Mountains in Shaanxi Province,and climatic factors affecting the tree-ring widths of L.chinensis were examined.Correlation analysis showed that similar correlations between tree-ring width chronologies and climatic factors demonstrated that radial growth responded to climate change on both slopes.The radial growth of L.chinensis was mainly limited by temperature,especially the growing season.In contrast,both chronologies were negatively correlated with precipitation in May of the previous year and April of the current year.Spatial climate-correlation analyses with gridded land-surface climate data revealed that our tree-ring width chronologies contained a strong regional temperature signal over much of northcentral and eastern China.Spatial correlation with seasurface temperature fields highlights the influence of the Pacific Ocean,Indian Ocean,and North Atlantic Ocean.Wavelet coherence analysis indicated the existence of some decadal and interannual cycles in the two tree-ring width chronologies.This may suggest the influences of El Nin˜o-Southern Oscillation and solar activity on tree growth in the Qinling Mountains.These findings will help us understand the growth response of L.chinensis to climate change in the Qinling region,and they provide critical information for future climate reconstructions based on this species in semi-humid regions.展开更多
Long-term temperature variability has significant effects on runoff into the upper reaches of inland rivers. This paper developed a tree-ring chronology of Qilian juniper (Sabina przewalskii Kom.) from the upper tree-...Long-term temperature variability has significant effects on runoff into the upper reaches of inland rivers. This paper developed a tree-ring chronology of Qilian juniper (Sabina przewalskii Kom.) from the upper tree-line of the middle Qilian Mountains within the upper reaches of Heihe River Basin, Northwest China for a long-term reconstruction of temperature at the study site. In this paper, tree-ring chronology was used to examine climate-growth associations considering local climate data obtained from Qilian Meteorological Station. The results showed that temperatures correlated extremely well with standardized growth indices of trees (r=0.564, P<0.001). Tree-ring chronology was highest correlated with annual mean temperature (r=0.641, P<0.0001). Annual mean temperature which spans the period of 1445–2011 was reconstructed and explained 57.8% of the inter-annual to decadal temperature variance at the regional scale for the period 1961–2011. Spatial correlation patterns revealed that reconstructed temperature data and gridded temperature data had a significant correlation on a regional scale, indicating that the reconstruction represents climatic variations for an extended area surrounding the sampling sites. Analysis of the temperature reconstruction indicated that major cold periods occurred during the periods of 1450s–1480s, 1590s–1770s, 1810s–1890s, 1920s–1940s, and 1960s–1970s. Warm intervals occurred during 1490s–1580s, 1780s–1800s, 1900s–1910s, 1950s, and 1980s to present. The coldest 100-year and decadal periods occurred from 1490s–1580s and 1780s–1800s, respectively, while the warmest 100 years within the studied time period was the 20<sup>th</sup> century. Colder events and intervals coincided with wet or moist conditions in and near the study region. The reconstructed temperature agreed well with other temperature series reconstructed across the surrounding areas, demonstrating that this reconstructed temperature could be used to evaluate regional climate change. Compared to the tree-ring reconstructed temperature from nearby regions and records of glacier fluctuations from the surrounding high mountains, this reconstruction was reliable, and could aid in the evaluation of regional climate variability. Spectral analyses suggested that the reconstructed annual mean temperature variation may be related to large-scale atmospheric–oceanic variability such as the solar activity, Pacific Decadal Oscillation (PDO) and El Ni?o–Southern Oscillation (ENSO).展开更多
Based on the analysis of the correlation between the tree-ring width of Pinus tabulaeformis and the climate factors in the western Hedong sandy land of Ningxia, a conversion equation between the annual precipitation a...Based on the analysis of the correlation between the tree-ring width of Pinus tabulaeformis and the climate factors in the western Hedong sandy land of Ningxia, a conversion equation between the annual precipitation and the tree-ring width since 1899 was reconstructed. The results of cross verification indicated that the conversion equation is stable and the reconstructed results are reliable. The result of reconstructed annual precipitation showed the remarkable fluctuation of precipitation and dry-to-wet variation before the 1940s. The smaller fluctuation and high frequent changes of precipitation occurred during the period of 1940s-1980s and after the 1980s the change trend of the precipitation became high periodic extent and low frequent. The study found that there were some coincidences with the climate change in Changling Mountains, Helan Mountains and the east of Qilian Mountains. The relatively dry periods in the beginning of 20th century, 1920s to 1930s, the end of the 20th century and 2004 to 2006 in the western Hedong sandy land of Ningxia accelerated the desertification, while the relatively humid period during the periods of the 1910s-1920s, 1930s-1940s and 1990s is favorable to prevent and control the desertification, and to weaken the climate warming and drying. The periods of annual precipitation variation in the western Hedong sandy land of Ningxia since 1899 are approximately 2-4 years, 5-7 years and 10 years.展开更多
A tree-ring width chronology of 442 years(1567-2008) was developed from Tibetan junipers(S.tibetica) derived from south Tibet in western China.Three versions of chronology were produced according to standard dendrochr...A tree-ring width chronology of 442 years(1567-2008) was developed from Tibetan junipers(S.tibetica) derived from south Tibet in western China.Three versions of chronology were produced according to standard dendrochronological techniques.The correlation and response analysis displays a high correlation between the standard tree ring-width chronology and observed annual mean precipitation series during the period 1961-2008.Based on a linear regression model,an annual(prior August to current July) precipitation for the past 229 years was reconstructed.This is the first well-calibrated precipitation reconstruction for the Nanggarze region,south Tibet.The results show that relatively wet years with above-average precipitation occurred in 1780-1807,1854-1866,1886-1898,1904-1949,1967-1981 and 2000-2008,whereas relatively dry years with below-average precipitation prevailed during 1808-1853,1867-1885,1899-1903,1950-1966 and 1982-1999.Common dry/wet periods during 1890s,1910s,1940s-1960s and 1980s were also identified from other moisture reconstructions of nearby regions,indicating a synchronous climatic variation in south Tibet.Abrupt change beginning in 1888 was detected,revealing a transition from wet to dry conditions in south Tibet.Power spectrum analysis reveals significant cycles of 28-year,5.5-5.6-year and 3.3-year during the past 200 years.展开更多
Climate constitutes the main limiting factor for tree-ring growth in high-elevation forests, and the relationship between tree-ring growth and climate is complex. Based on tree-ring chronology and meteorological data,...Climate constitutes the main limiting factor for tree-ring growth in high-elevation forests, and the relationship between tree-ring growth and climate is complex. Based on tree-ring chronology and meteorological data, the influence of precipitation, mean temperature and mean minimum temperature at yearly, seasonal and monthly scales on the tree-ring growth of Picea crossifolia was studied at treeline ecotones in the Qilian Mountains, northwestern China. The results show that growing season temperatures of previous and current years are important limiting factors on tree-ring growth, particularly June mean temperature and mean minimum temperature of current year. The precipitations in the previous winter and current spring have a positive correlation, and in the current fall has a negative correlation with tree-ring growth, but these correlations are not significant. Our results suggest that temperature controls tree-ring growth more strongly than precipitation at treeline ecotones in the Qilian Mountains.展开更多
基金supported the National Natural Science Foundation of China (42022059,41888101)the Strategic Priority Research Program of the Chinese Academy of Sciences,China (Grant No.XDB26020000)+1 种基金the Key Research Program of the Institute of Geology and Geophysics (CAS Grant IGGCAS-201905)the CAS Youth Interdisciplinary Team (JCTD-2021-05).
文摘Tree-ring width(RW),density,elemental com-position,and stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)are widely used as proxies to assess climate change,ecology,and environmental pollution;however,a specific pretreat-ment has been needed for each proxy.Here,we developed a method by which each proxy can be measured in the same sample.First,the sample is polished for ring width meas-urement.After obtaining the ring width data,the sample is cut to form a 1-mm-thick wood plate.The sample is then mounted in a vertical sample holder,and gradually scanned by an X-ray beam.Simultaneously,the count rates of the fluorescent photons of elements(for chemical characteriza-tion)and a radiographic grayscale image(for wood density)are obtained,i.e.the density and the element content are obtained.Then,cellulose is isolated from the 1-mm wood plate by removal of lignin,and hemicellulose.After producing this cellulose plate,cellulose subsamples are separated by knife under the microscope for inter-annual and intra-annual stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)analysis.Based on this method,RW,density,elemental composition,δ^(13)C,and δ^(18)O can be measured from the same sample,which reduces sample amount and treatment time,and is helpful for multi-proxy comparison and combination research.
文摘1 Background THE C<sub>i</sub>/C<sub>a</sub>, the ratio of intercellular and ambient C0<sub>2</sub> partial pressure, is internally controlled by thestomatal conductance and assimilation rate, and is externally affected by the atmospheric CO<sub>2</sub> concentration and climate changes. C<sub>i</sub>/C<sub>a</sub> can be only estimated by the isotopic fractionation equation of Farquchar. However, this method is limited by the very little observation of atmospheric δ<sup>13</sup> C before1980. Leavitt had to interpolate the atmospheric δ<sup>13</sup> C by means of the polynomial. A geochemicalmethod to model C<sub>i</sub>/C<sub>a</sub> by tree-ring δ<sup>13</sup>C has been developed to reduce the dependence. By the estimated tree-ring C<sub>i</sub>/ C<sub>a</sub>, the authors here discuss C0<sub>2</sub> and water exchanges between the atmosphere and biosphere that greatly influence the climate
基金supported by the Czech University of Life Sciences Prague,Faculty of Forestry and Wood Sciences(No.IGA A_21_26)the Ministry of Agriculture of the Czech Republic(No.QK1910292 and QK21020371).
文摘Silver fir(Abies alba Mill.)is a flexible European tree species,mainly vegetating within the mountainous regions of Europe,but its growth responses across its latitudinal and longitudinal range have not yet been satisfactorily verified under changing environmental conditions.This study describes the tree-ring increment of silver fir in research plots across a latitudinal gradient from the northern range in Czechia(CZ),through Croatia(HR)to the southernmost range in Italy(IT).The research aims to analyze in detail the dynamics and cyclicity of the ringwidth index(RWI)and how it relates to climatic factors(temperature and precipitation),the North Atlantic Oscillation(NAO),and total solar irradiance(TSI),including the determination of latitude.The results show that the main drivers affecting fir growth are the seasonal NAO index and TSI.Monthly temperatures affect RWI early in the vegetation season,while lack of precipitation during the summer is a limiting factor for fir growth,especially in July.Seasonal temperatures and temperatures in June and July negatively impact,while seasonal precipitation totals in the same months positively influence the RWI in all research plots across meridian.The longest growth cycles in fir RWI were recorded in the northernmost studied plots in CZ.These cyclical fluctuations recede approaching the south.The cyclic increase in RWI is related to the TSI,which decreases its effect from north to south.The TSI's effects vary,positively impacting CZ but negatively influencing HR while remaining relatively neutral in IT.On the other hand,seasonal NAO tends to negatively affect silver fir growth in HR and CZ but has a mildly positive effect in IT.In conclusion,the TSI and the influence of the seasonal NAO index are prevalent in the fir RWI and are accompanied by a greater cyclicity of RWI in Central Europe(temperature optimum)than in the Italian Mediterranean region,where this tree species is limited by climatic conditions,especially lack of precipitation.
基金supported by the Major Knowiedge Innovation Project of the Chinese Aademy of Sciences(Gant Nos.KZCX1-1002 and KZCX1-1009)the opening fund of the Key Laboratory of Ice-core and Cold-regions Environment,Cold and Arid Regions Environment and Engineering Research Insti tute,Chinese Academy ofSciences(Grant No.210506)..
文摘Based on the cross-dated tree-ring samples collected from the middle Qilian Moun- tain, a standard ring-width chronology had been developed, which covered the period AD 1000 to 2000. The correlations between the chronology and climatic records from the nearby meteorological stations indicated that temperature was the dominant climatic factor for tree growth at upper timberline, and the most important climatic factor for the tree growth in the area was the mean temperature from previous December to current April. The temperature variations recovered from the ring-width data showed a cold period during the “Little Ice Age” and the con- tinuous warming during the twentieth century. Comparison between the ring-width chronology and δ18O records from the Dunde ice core in the Qilian Mountain indicated that there was a con- sistent trend in both time series. A significant correlation existed between our ring-width chro- nology and the Northern Hemispheric temperature, suggesting that the climate changes in the Qilian Mountain were not only driven by regional factors, but also responsive to the global cli- mate.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41001058, 41001009, 40971119 and 40890052)the China Postdoctoral Science Foundation (Grant Nos. 201003194)
文摘The ring-width chronology of a Juniperus przewalskii tree from the middle of the Qilian Mountain was constructed to estimate the annual precipitation (from previous August to current July) since AD 1480.The reconstruction showed four major alternations of drying and wetting over the past 521 years.The rainy 16th century was followed by persistent drought in the 17th century.Moreover,relatively wet conditions persisted from the 18th to the beginning of 20th century until the recurrence of a drought during the 1920s and 1930s.Based on the Empirical Mode Decomposition method,eight Intrinsic Mode Functions (IMFs) were extracted,each representing unique fluctuations of the reconstructed precipitation in the time-frequency domain.The high amplitudes of IMFs on different timescales were often consistent with the high amount of precipitation,and vice versa.The IMF of the lowest frequency indicated that the precipitation has undergone a slow increasing trend over the past 521 years.The 2-3 year and 5-8 year time-scales reflected the characteristics of inter-annual variability in precipitation relevant to regional atmospheric circulation and the El Ni?o-Southern Oscillation (ENSO),respectively.The 10-13 year scale of IMF may be associated with changing solar activity.Specifically,an amalgamation of previous and present data showed that droughts were likely to be a historically persistent feature of the Earth's climate,whereas the probability of intensified rainfall events seemed to increase during the course of the 19th and 20th centuries.These changing characteristics in precipitation indicate an unprecedented alteration of the hydrological cycle,with unknown future amplitude.Our reconstruction complements existing information on past precipitation changes in the Qilian Mountain,and provides additional low-frequency information not previously available.
基金Supported by the National Natural Science Foundation of China (Grant No.19373017)
文摘The variation of the tree-ring's index of a platycladus orientalis at the Mausoleum of Emperor Huang and of a long series of sunspots relative number during AD1470-1974 are analyzed by using the wavelet power spectrum method,and their variation characters are also discussed. It is determined that the tree-ring's variation has cycles of approximate 2-7,11,93 and 150 a. Two data series are used for analyzing sunspot relative number(SSN) variation. First,the analysis of the annual average SSN during AD1700-1974 proved that variation cycles are about 11,50,and 93 a; then,the data during AD1465-1975 obtained from the decadal average SSN train over 7000 a reconstructed on the geomagnetic data is analyzed and its variation cycles are about 50,90,and 160 a. Besides the tree-rings cycle of 2-7 a is commonly considered to be related to ENSO,while 11 a cycle is related to solar Schwabe cycle; in addition,it is possible that the cycles of 90 and150 a are likely to be related to solar Gleissberg cycle and Suess cycle. The correlations between them are possibly due to the effect of solar activity on the climate and additionally on the tree's growth.
基金This study was supported by National Key Research and Development Program of China(No.2018YFA0605601)National Natural Science Foundation of China(No.42077417 and41671042).
文摘The Tongbai Mountains is an ecologically sensi-tive region and the northern boundary of Pinus massoniana Lamb.To analyze the effect of different microenvironments on tree growth response to climate factors,we developed standard chronologies for earlywood width(EWW),late-wood width(LWW),and total ring width(TRW)of P.massoniana at two sampling sites on slopes with different orientations,then analyzed characteristics of the chronolo-gies and their correlations with climate variables from five stations in the region and with a regional normalized differ-ence vegetation index(NDVI).Statistical results showed that the TRW/EWW/LWW chronology consistency and charac-teristics(mean sensitivity,signal to noise ratio,expressed population signal)for trees growing on the southeastern slope were much higher than for trees on the northeastern slope.Correlations indicated that temperature in current March and August has a significant positive effect on TRW/EWW/LWW formation,and the effect on the northeastern slope was weaker than on the southeastern slope.Compared to temperature,precipitation has more complicated effects on tree growth,but the effect on the northeastern slope was also generally weaker than on the southeastern slope.Step-wise linear regression analyses showed that temperature in August was the main limiting factor at the two sampling sites.Similarly,the response of tree growth on the southeast-ern slope as determined by the NDVI is better than on the northeastern slope,and the TRW/EWW/LWW chronologies for the southeastern slope explained over 50%of the total NDVI variances in June.Overall,the results indicate that the difference in the climate response of P.massoniana at two sampling sites is clearly caused by differences in the microenvironment,and such differences should be properly considered in future studies of forest dynamics and climate reconstructions.
基金This study was supported by the National Key Research and Development Program of China(No.2018YFA0605601)Hong Kong Research Grants Council(No.106220169)+1 种基金the National Natural Science Foundation of China(Nos.41671042,42077417,42105155,and 42201083)the National Geographic Society(No.EC-95776R-22).
文摘Tree-ring chronologies were developed for Sabina saltuaria and Abies faxoniana in mixed forests in the Qionglai Mountains of the eastern Tibetan Plateau.Climate-growth relationship analysis indicated that the two co-exist-ing species reponded similarly to climate factors,although S.saltuaria was more sensitive than A.faxoniana.The strong-est correlation was between S.saltuaria chronology and regional mean temperatures from June to November.Based on this relationship,a regional mean temperature from June to November for the period 1605-2016 was constructed.Reconstruction explained 37.3%of the temperature variance during th period 1961-2016.Six major warm periods and five major cold periods were identified.Spectral analysis detected significant interannual and multi-decadal cycles.Reconstruction also revealed the influence of the Atlantic Multi-decadal Oscillation,confirming its importance on climate change on the eastern Tibetan Plateau.
基金supported by Alpine timberline fluctuations and the response to climate change at centennial to millennial time scales in the Qinling Mountains (no.42371072)a General Programfrom the Natural Science Foundation of Shaanxi Province (no.2014JQ5172)+1 种基金the Open Fund Project of the State Key Laboratory of Loess and Quaternary Geology (no.SKLLQG1611)the National Forestry Public Welfare Industry Scientific Research Project of China (no.201304309).
文摘Changes in annual radial growth is an important indication of climate change. Dendroclimatology studies in northern China have focused on linear statistical analysis,but lacking studies based on the process of ring formation to clarify the radial growth of trees. Tree-ring width standard chronology(STD) was established using samples of Larix principis-rupprechtii collected at 2303 m altitude on Luya Mountain. Using the Vaganov-Shashkin(VS) model to simulate growth and development, the internal physiological mechanism of radial growth is identified. It was concluded that:(1) the growing season of L. principis-rupprechtii was May to September;(2) soil moisture was a significant factor in the early and late growing seasons, and temperature was the dominant factor in its main growth period;and(3) formation of narrow ring widths was closely related to drought stress, the development of wide ring widths will be restricted by increasing future temperatures. The VS model is applicable for radial growth simulation of subalpine coniferous forests and for guiding the cultivation of local tree species in the future.
基金supported by the National Natural Science Foundation of China (NSFC) (No.42171167,41701050,42261134537)Key Laboratory Cooperative Research Project of CAS (Chinese Academy of Sciences)+2 种基金Inner Mongolia Autonomous Region Special Fund project for Transformation of Scientific and Technological Achievements (2021CG0046)the Alxa League Science and Technology Project (AMYY 2021-19)supported by the Ministry of Science and Higher Education of the Russian Federation (FSRZ-2023-0007).
文摘Existing streamflow reconstructions based on tree-ring analysis mostly rely on species from upland,mainly montane areas,while lowland species(generally plain)areas are rarely used.This limits the understanding of streamflow change history in the lowlands,which is an important basis for water resource management.This study focused on Populus euphratica stands located along the main stream,eastern and western tributaries in the lower reaches of the Heihe River basin(HRb),in arid northwestern China.We investigated how streamflow regulation interferes with ripar-ian trees in lowlands when they used for streamflow recon-struction.Tree-ring width chronologies were developed and analyzed in conjunction with meteorological and hydrologic observation data.The results show streamflow regulation leads in sharp fluctuations in the streamflow allocation between the eastern tributaries and western tributaries.This resulted in instability of the correlation between streamflow at the two tributaries and at the Zhengyixia hydrologic station,with corresponding fluctuations in radial growth of poplar trees on the banks of the two tributaries and at the station.Streamflow regulation altered the natural patterns of seasonal streamflow below the station,changing the time window of poplar response.This study provides useful insight into tree-ring width based streamflow reconstruction in the lowlands.
基金supported by the National Natural Science Foundation of China(Nos.32220103010,32192431,31722013)the National Key R&D Program of China(Nos.2023YFF1304201,2020YFA0608100)+1 种基金the Major Program of Institute of Applied EcologyChinese Academy of Sciences(No.IAEMP202201)。
文摘Extreme droughts are anticipated to have detrimental impacts on forest ecosystems,especially in water-limited regions,due to the influence of climate change.However,considerable uncertainty remains regarding the patterns in species-specific responses to extreme droughts.Here,we conducted a study integrating dendrochronology and remote sensing methods to investigate the mosaic-distributed maple-oak(native)natural forests and poplar plantations(introduced)in the Horqin Sandy Land,Northeast China.We assessed the impacts of extreme droughts on tree performances by measuring interannual variations in radial growth and vegetation index.The results showed that precipitation and self-calibrated palmer drought severity index(scPDSI)are the major factors influencing tree-ring width index(RWI)and normalized difference vegetation index(NDVI).The severe droughts between 2000 and 2004 resulted in reduced RWI in the three studied tree species as well as led to NDVI reductions in both the maple-oak natural forests and the poplar plantations.The RWI reached the nadir during the2000-2004 severe droughts and remained at low levels two years after the severe drought,creating a legacy effect.In contrast to the lack of significant correlation between RWI and scPDSI,NDVI exhibited a significant positive correlation with scPDSI indicating the greater sensitivity of canopy performance to droughts than radial growth.Furthermore,interspecific differences in RWI and NDVI responses were observed,with the fast-growing poplar species experiencing a more significant RWI decrease and more negative NDVI anomaly during severe droughts than native species,highlighting the species-specific trade-offs between drought resilience and growth rate.This study emphasizes the importance of combining tree-level radial growth with landscape-scale canopy remote sensing to understand forest resilience and response.Our study improves our understanding of forest responses to extreme drought and highlights species differences in climate responses,offering crucial insights for optimizing species selection in sustainable afforestation and forest management in water-limited regions under the influence of climate change.
基金funded by the National Key Research and Development Program of China(No.2018YFA0605601)Hong Kong Research Grants Council(No.106220169)+1 种基金the National Natural Science Foundation of China(No.42105155,41671042,and 42077417)the National Geographic Society(No.EC-95776R-22)。
文摘Minimum temperatures have remarkable impacts on tree growth at high-elevation sites on the Tibetan Plateau,but the shortage of long-term and high-resolution paleoclimate records inhibits understanding of recent minimum temperature anomalies.In this study,a warm season(April–September)reconstruction is presented for the past 467 years(1550–2016)based on Sabina tibetica ring-width chronology on the Lianbaoyeze Mountain of the central eastern Tibetan Plateau.Eight warm periods and eight cold periods were identified.Long-term minimum temperature variations revealed a high degree of coherence with nearby reconstructions.Spatial correlations between our reconstruction and global sea surface temperatures suggest that warm season minimum temperature anomalies in the central eastern Tibetan Plateau were strongly influenced by large-scale ocean atmospheric circulations,such as the El Ni?o-Southern Oscillation and the Atlantic Multidecadal Oscillation.
基金funded by Deutscher Akademisher Austausch Dienst(DAAD)Biodiversity Monitoring Transect Analysis(BIOTA)project
文摘Based on 120 stem discs collected during3 months of fieldwork along a 12 km route,the history of fires in the Wari Maro Forest(09 1000 N–02 1000E) over the past century in savanna woodland and dry forest was reconstituted.Three major ecological areas are characterized:one highly burnt zone located between two relative less burnt areas.By analyzing tree rings,246 fire scars were identified.The scars were caused by 51 fire years,occurring at a mean interval of 2.23 years.From 1890 to1965,only 6 years with fires were recorded from sampled trees.Since 1966,no year has passed without fire.The fire frequency point scale reached 14 years.This was the case of Burkea africana,which has been identified as a species tolerant to fire and could be planted to create a natural firewall.In contrast,Anogeissus leiocarpa is highly sensitive to fire,and in a dry forest ecosystem that burns seasonally,it requires a special conservation plan.Two new concepts are described:the rebarking of trees after fire and Mean Kilometer Fire Interval.The first concept was tested with Daniellia oliveri(Rolfe) Hutch & Dalz trees,and the second concept was used to evaluate spatial fire distribution.We demonstrate that savanna woodland and dry forest were subject to a degradation process caused by destructive fires related to vegetation cover clearance and illegal logging.
基金supported by the National Natural Science Foundation of China (41275120, 41605047)the Shanghai Cooperation Organization Science and Technology Partnership (2017E01032)+1 种基金the Special Foundation for Asian Regional Cooperation (Climate Reconstruction of Tian Shan in China, Kyrgyzstan and Tajikistan)the Autonomous Region Youth Science and Technology Innovation Talents Training Project (qn2015bs025)
文摘Reconstructing the hydrological change based on dendrohydrological data has important implications for understanding the dynamic distribution and evolution pattern of a given river. The widespread, long-living coniferous forests on the Altay Mountains provide a good example for carrying out the dendrohydrological studies. In this study, a regional composite tree-ring width chronology developed by Lariat sibirica Ledeb. and Picea obovata Ledeb. was used to reconstruct a 301-year annual (from preceding July to succeeding June) streamflow for the Haba River, which originates in the southern Altay Mountains, Xinjiang, China. Results indicated that the reconstructed streamflow series and the observations were fitting well, and explained 47.5% of the variation in the observed streamflow of 1957-2008. Moreover, floods and droughts in 1949-2000 were precisely captured by the streamflow reconstruction. Based on the frequencies of the wettest/driest years and decades, we identified the 19th century as the century with the largest occurrence of hydrological fluctuations for the last 300 years. After applying a 21-year moving average, we found five wet (1724-1758, 1780-1810, 1822-1853, 1931-1967, and 1986-2004) and four dry (1759-1779, 1811-1821, 1854-1930, and 1968-1985) periods in the streamflow reconstruction. Furthermore, four periods (1770-1796, 1816-1836, 1884-1949, and 1973-1997) identified by the streamflow series had an obvious increasing trend. The increasing trend of streamflow since the 1970s was the biggest in the last 300 years and coincided with the recent warming-wetting trend in northwestern China. A significant correlation between streamflow and precipitation in the Altay Mountains indicated that the streamflow reconstruction contained not only local, but also broad-scale, hydro-climatic signals. The 24-year, 12-year, and 2.2-4.5-year cycles of the reconstruction revealed that the streamflow variability of the Haba River may be influenced by solar activity and the atmosphere-ocean system.
基金National Natural Science Foundation of China, No.40525004 No.40599420+2 种基金 No.90211081 No.40531003 No.40121303
文摘Tree-ring standardized chronologies are developed by 78 cores collected from the eastern and western Helan Mountain. Statistical analysis shows that both the STD and RES chronologies correlate negatively with the temperature of different periods of early half year, especially with January to August mean (JA) temperature, which means that JA temperature is one of the predominant limiting factors of tree growth in the Helan Mountain. Based on this analysis, we reconstructed JA temperature, and the explained variance is 43.3% (F=21.422, p〈0.001 ). The comparatively high temperature periods in the reconstruction were: 1805-1818 1828-1857, 1899-1907, 1919-1931 and 1968-1995; and the comparatively low temperatu re periods happened in 1858-1872, 1883-1895 and 1935-1953. Ten-year moving average curve shows three slow uplifting trends: 1766-1853, 1862-1931 and 1944-1995. Each temperature increase was followed by a sudden temperature decrease about 10 years, that is to say, the JA temperature in the Helan Mountain is characterized by slow increase and sudden decrease. The 70- and 10.77-year periodicities detected in the temperature series correspond to the Gleissberg (80-year) and Schwabe (11-year) periodicities of solar activity respectively, the 2.11-2.62 years cycles are considered to be influenced by QBO (Quasi-Biennial-Oscillation) and the local environmental change.
基金funded by National Natural Science Foundation of China(No.31370587)
文摘Tree-ring width chronologies of Larix chinensis were developed from the northern and southern slopes of the Qinling Mountains in Shaanxi Province,and climatic factors affecting the tree-ring widths of L.chinensis were examined.Correlation analysis showed that similar correlations between tree-ring width chronologies and climatic factors demonstrated that radial growth responded to climate change on both slopes.The radial growth of L.chinensis was mainly limited by temperature,especially the growing season.In contrast,both chronologies were negatively correlated with precipitation in May of the previous year and April of the current year.Spatial climate-correlation analyses with gridded land-surface climate data revealed that our tree-ring width chronologies contained a strong regional temperature signal over much of northcentral and eastern China.Spatial correlation with seasurface temperature fields highlights the influence of the Pacific Ocean,Indian Ocean,and North Atlantic Ocean.Wavelet coherence analysis indicated the existence of some decadal and interannual cycles in the two tree-ring width chronologies.This may suggest the influences of El Nin˜o-Southern Oscillation and solar activity on tree growth in the Qinling Mountains.These findings will help us understand the growth response of L.chinensis to climate change in the Qinling region,and they provide critical information for future climate reconstructions based on this species in semi-humid regions.
基金supported by the National Natural Science Foundation of China(91025002,30970492)the National Key Technology Research&Development Program(2012BAC08B05)the Key Project of the Chinese Academy of Sciences(KZZD-EW-04-05)
文摘Long-term temperature variability has significant effects on runoff into the upper reaches of inland rivers. This paper developed a tree-ring chronology of Qilian juniper (Sabina przewalskii Kom.) from the upper tree-line of the middle Qilian Mountains within the upper reaches of Heihe River Basin, Northwest China for a long-term reconstruction of temperature at the study site. In this paper, tree-ring chronology was used to examine climate-growth associations considering local climate data obtained from Qilian Meteorological Station. The results showed that temperatures correlated extremely well with standardized growth indices of trees (r=0.564, P<0.001). Tree-ring chronology was highest correlated with annual mean temperature (r=0.641, P<0.0001). Annual mean temperature which spans the period of 1445–2011 was reconstructed and explained 57.8% of the inter-annual to decadal temperature variance at the regional scale for the period 1961–2011. Spatial correlation patterns revealed that reconstructed temperature data and gridded temperature data had a significant correlation on a regional scale, indicating that the reconstruction represents climatic variations for an extended area surrounding the sampling sites. Analysis of the temperature reconstruction indicated that major cold periods occurred during the periods of 1450s–1480s, 1590s–1770s, 1810s–1890s, 1920s–1940s, and 1960s–1970s. Warm intervals occurred during 1490s–1580s, 1780s–1800s, 1900s–1910s, 1950s, and 1980s to present. The coldest 100-year and decadal periods occurred from 1490s–1580s and 1780s–1800s, respectively, while the warmest 100 years within the studied time period was the 20<sup>th</sup> century. Colder events and intervals coincided with wet or moist conditions in and near the study region. The reconstructed temperature agreed well with other temperature series reconstructed across the surrounding areas, demonstrating that this reconstructed temperature could be used to evaluate regional climate change. Compared to the tree-ring reconstructed temperature from nearby regions and records of glacier fluctuations from the surrounding high mountains, this reconstruction was reliable, and could aid in the evaluation of regional climate variability. Spectral analyses suggested that the reconstructed annual mean temperature variation may be related to large-scale atmospheric–oceanic variability such as the solar activity, Pacific Decadal Oscillation (PDO) and El Ni?o–Southern Oscillation (ENSO).
基金supported by the National Natural Science Foundation of China (40801004, 40671184)the Research Fund for the Doctoral Program of Higher Education (20070027019)
文摘Based on the analysis of the correlation between the tree-ring width of Pinus tabulaeformis and the climate factors in the western Hedong sandy land of Ningxia, a conversion equation between the annual precipitation and the tree-ring width since 1899 was reconstructed. The results of cross verification indicated that the conversion equation is stable and the reconstructed results are reliable. The result of reconstructed annual precipitation showed the remarkable fluctuation of precipitation and dry-to-wet variation before the 1940s. The smaller fluctuation and high frequent changes of precipitation occurred during the period of 1940s-1980s and after the 1980s the change trend of the precipitation became high periodic extent and low frequent. The study found that there were some coincidences with the climate change in Changling Mountains, Helan Mountains and the east of Qilian Mountains. The relatively dry periods in the beginning of 20th century, 1920s to 1930s, the end of the 20th century and 2004 to 2006 in the western Hedong sandy land of Ningxia accelerated the desertification, while the relatively humid period during the periods of the 1910s-1920s, 1930s-1940s and 1990s is favorable to prevent and control the desertification, and to weaken the climate warming and drying. The periods of annual precipitation variation in the western Hedong sandy land of Ningxia since 1899 are approximately 2-4 years, 5-7 years and 10 years.
基金funded by the National Basic Research Program of China (973 Program) (No.2010CB950104)the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (Grant No.2009S1-38)+1 种基金the Chinese Academy of Sciences (CAS) 100 Talents Project (29082762)the NSFC (Grant no.40871091)
文摘A tree-ring width chronology of 442 years(1567-2008) was developed from Tibetan junipers(S.tibetica) derived from south Tibet in western China.Three versions of chronology were produced according to standard dendrochronological techniques.The correlation and response analysis displays a high correlation between the standard tree ring-width chronology and observed annual mean precipitation series during the period 1961-2008.Based on a linear regression model,an annual(prior August to current July) precipitation for the past 229 years was reconstructed.This is the first well-calibrated precipitation reconstruction for the Nanggarze region,south Tibet.The results show that relatively wet years with above-average precipitation occurred in 1780-1807,1854-1866,1886-1898,1904-1949,1967-1981 and 2000-2008,whereas relatively dry years with below-average precipitation prevailed during 1808-1853,1867-1885,1899-1903,1950-1966 and 1982-1999.Common dry/wet periods during 1890s,1910s,1940s-1960s and 1980s were also identified from other moisture reconstructions of nearby regions,indicating a synchronous climatic variation in south Tibet.Abrupt change beginning in 1888 was detected,revealing a transition from wet to dry conditions in south Tibet.Power spectrum analysis reveals significant cycles of 28-year,5.5-5.6-year and 3.3-year during the past 200 years.
基金supported by the Major Research Plan of National Natural Science Foundation of China (No. 91025014),the National Natural Science Foundation of China (No. 30800147)
文摘Climate constitutes the main limiting factor for tree-ring growth in high-elevation forests, and the relationship between tree-ring growth and climate is complex. Based on tree-ring chronology and meteorological data, the influence of precipitation, mean temperature and mean minimum temperature at yearly, seasonal and monthly scales on the tree-ring growth of Picea crossifolia was studied at treeline ecotones in the Qilian Mountains, northwestern China. The results show that growing season temperatures of previous and current years are important limiting factors on tree-ring growth, particularly June mean temperature and mean minimum temperature of current year. The precipitations in the previous winter and current spring have a positive correlation, and in the current fall has a negative correlation with tree-ring growth, but these correlations are not significant. Our results suggest that temperature controls tree-ring growth more strongly than precipitation at treeline ecotones in the Qilian Mountains.