Feature extraction of symmetrical triangular linear frequency modulation continuous wave (LFM- CW) signal is studied. Combined with its peculiar charaeteristics, a novel algorithm based on Wigner-Hough transform (...Feature extraction of symmetrical triangular linear frequency modulation continuous wave (LFM- CW) signal is studied. Combined with its peculiar charaeteristics, a novel algorithm based on Wigner-Hough transform (WHT) is presented for the deteetion and parameter estimation of this type of waveform. The initial frequency and chirp rate of each segment of this wave are estimated, and the peak-value searching steps in the parameter spaee is given. Compared with Wigner-Ville distribution (WVD), Pseudo-Wigner-Ville distri- bution (PWD) and Smoothed-Peseudo-Wigner-Ville distribution (SPWD), WHT has proven itself to be the best method for feature extraetion of symmetrical triangular LFMCW signal. In the end, Monte-Carlo simulations under different SNRs are earried out, with validating results on this method.展开更多
基金Sponsored by the National Natural Science Foundation of China (6023201060572094)the National Natural Science Foundation of China for Distinguished Young Scholars (60625104)
文摘Feature extraction of symmetrical triangular linear frequency modulation continuous wave (LFM- CW) signal is studied. Combined with its peculiar charaeteristics, a novel algorithm based on Wigner-Hough transform (WHT) is presented for the deteetion and parameter estimation of this type of waveform. The initial frequency and chirp rate of each segment of this wave are estimated, and the peak-value searching steps in the parameter spaee is given. Compared with Wigner-Ville distribution (WVD), Pseudo-Wigner-Ville distri- bution (PWD) and Smoothed-Peseudo-Wigner-Ville distribution (SPWD), WHT has proven itself to be the best method for feature extraetion of symmetrical triangular LFMCW signal. In the end, Monte-Carlo simulations under different SNRs are earried out, with validating results on this method.