Because of the limited space of the launch rockets, deployable mechanisms are always used to solve the phenomenon. One dimensional deployable mast can deploy and support antenna, solar sail and space optical camera. T...Because of the limited space of the launch rockets, deployable mechanisms are always used to solve the phenomenon. One dimensional deployable mast can deploy and support antenna, solar sail and space optical camera. Tape-spring hyperelastic hinges can be folded and extended into a rod like configuration. It utilizes the strain energy to realize self-deploying and drive the other structures. One kind of triangular prism mast with tape-spring hyperelastic hinges is proposed and developed. Stretching and compression stiffness theoretical model are established with considering the tape-spring hyperelastic hinges based on static theory. The finite element model of ten-module triangular prism mast is set up by ABAQUS with the tape-spring hyperelastic hinge and parameter study is performed to investigate the influence of thickness, section angle and radius. Two-module TPM is processed and tested the compression stiffness by the laser displacement sensor, deploying repeat accuracy by the high speed camera, modal shape and fundamental frequency at cantilever position by LMS multi-channel vibration test and analysis system, which are used to verify precision of the theoretical and finite element models of ten-module triangular prism mast with the tape-spring hyperelastic hinges. This research proposes an innovative one dimensional triangular prism with tape-spring hyperelastic hinge which has great application value to the space deployable mechanisms.展开更多
The application of the finite layer & triangular prism element method to the 3D ground subsidence and stress analysis caused by mining is presented. The layer elements and the triangular prism elements have been a...The application of the finite layer & triangular prism element method to the 3D ground subsidence and stress analysis caused by mining is presented. The layer elements and the triangular prism elements have been alternatively used in the numerical simulation system, the displacement pattern, strain matrix, elastic matrix, stiffness matrix, load matrix and the stress matrix of the layer element and triangular prism element have been presented. By means of the Fortran90 programming language, a numerical simulation system based on finite layer & triangular prism element have been built up, and this system is suitable for subsidence prediction and stress analysis of all mining condition and mining methods. Comparing with the infinite element method, this approach dramatically reduces the size of the set of equations that need to be solved, and greatly reduces the amount of data preparation required. It not only saves the internal storage, and the computation time, but also decreases the cost.展开更多
Circulating tumor DNA(ctDNA) refers to a class of acellular nucleic acids carrying genetic features of primary tumor,which can be regarded as a promising noninvasive biomarker for cancer diagnosis.The development of c...Circulating tumor DNA(ctDNA) refers to a class of acellular nucleic acids carrying genetic features of primary tumor,which can be regarded as a promising noninvasive biomarker for cancer diagnosis.The development of ctDNA assay is an important component of liquid biopsy.In this study,we have fabricated a novel electrochemical strategy for ultrasensitive detection of ctDNA combining the merits of strand displacement amplification and DNA nanostructures.Stable DNA triangular prism is firstly selfassembled and modified on the electrode surface.After target initiated strand displacement polymerization reaction,the generated DNA product helps the formation of three-way junction nanostructure on triangular prism,which localizes electrochemical species.By carefully investigating the electrochemical responses,the limit of detection(LOD) for ctDNA assay as low as 48 amol/L is achieved.This proposed electrochemical biosensor shows great potential for clinical applications.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51605001)Joint Funds of the National Natural Science Foundation of China(Grant No.U1637207)Anhui University Research Foundation for Doctor(Grant No.J01003222)
文摘Because of the limited space of the launch rockets, deployable mechanisms are always used to solve the phenomenon. One dimensional deployable mast can deploy and support antenna, solar sail and space optical camera. Tape-spring hyperelastic hinges can be folded and extended into a rod like configuration. It utilizes the strain energy to realize self-deploying and drive the other structures. One kind of triangular prism mast with tape-spring hyperelastic hinges is proposed and developed. Stretching and compression stiffness theoretical model are established with considering the tape-spring hyperelastic hinges based on static theory. The finite element model of ten-module triangular prism mast is set up by ABAQUS with the tape-spring hyperelastic hinge and parameter study is performed to investigate the influence of thickness, section angle and radius. Two-module TPM is processed and tested the compression stiffness by the laser displacement sensor, deploying repeat accuracy by the high speed camera, modal shape and fundamental frequency at cantilever position by LMS multi-channel vibration test and analysis system, which are used to verify precision of the theoretical and finite element models of ten-module triangular prism mast with the tape-spring hyperelastic hinges. This research proposes an innovative one dimensional triangular prism with tape-spring hyperelastic hinge which has great application value to the space deployable mechanisms.
文摘The application of the finite layer & triangular prism element method to the 3D ground subsidence and stress analysis caused by mining is presented. The layer elements and the triangular prism elements have been alternatively used in the numerical simulation system, the displacement pattern, strain matrix, elastic matrix, stiffness matrix, load matrix and the stress matrix of the layer element and triangular prism element have been presented. By means of the Fortran90 programming language, a numerical simulation system based on finite layer & triangular prism element have been built up, and this system is suitable for subsidence prediction and stress analysis of all mining condition and mining methods. Comparing with the infinite element method, this approach dramatically reduces the size of the set of equations that need to be solved, and greatly reduces the amount of data preparation required. It not only saves the internal storage, and the computation time, but also decreases the cost.
基金supported by the Science and Technology Cooperation Project between the Chinese and Australian Governments (No.2017YFE0132300)the Science and Technology Program of Suzhou (No.SYG201909)the Collaborative Innovation Program of Jinan (No.2018GXRC033)。
文摘Circulating tumor DNA(ctDNA) refers to a class of acellular nucleic acids carrying genetic features of primary tumor,which can be regarded as a promising noninvasive biomarker for cancer diagnosis.The development of ctDNA assay is an important component of liquid biopsy.In this study,we have fabricated a novel electrochemical strategy for ultrasensitive detection of ctDNA combining the merits of strand displacement amplification and DNA nanostructures.Stable DNA triangular prism is firstly selfassembled and modified on the electrode surface.After target initiated strand displacement polymerization reaction,the generated DNA product helps the formation of three-way junction nanostructure on triangular prism,which localizes electrochemical species.By carefully investigating the electrochemical responses,the limit of detection(LOD) for ctDNA assay as low as 48 amol/L is achieved.This proposed electrochemical biosensor shows great potential for clinical applications.