A total of 153 soil samples were collected from Changsha City, China, to analyze the contents of As, Cd, Cr, Cu, Hg, Mn, Ni, Pb and Zn. A combination of sampling data, multivariate statistical method, geostatistical a...A total of 153 soil samples were collected from Changsha City, China, to analyze the contents of As, Cd, Cr, Cu, Hg, Mn, Ni, Pb and Zn. A combination of sampling data, multivariate statistical method, geostatistical analysis, direct exposure method and triangulated irregular network (TIN) model was successfully employed to discriminate sources, simulate spatial distributions and evaluate children's health risks of heavy metals in soils. The results show that not all sites in Changsha city may be suitable for living without remediation. About 9.0% of the study area provided a hazard index (HI)1.0, and 1.9% had an HI2.0. Most high HIs were located in the southern and western areas. The element of arsenic and the pathway of soil ingestion were the largest contribution to potential health risks for children. This study indicates that we should attach great importance to the direct soil heavy metals exposure for children's health.展开更多
It is important to quantify and analyze forest spatial patterns for studying biological characteristics,population interaction and the relationship between the population and environment.In this study,the forest spati...It is important to quantify and analyze forest spatial patterns for studying biological characteristics,population interaction and the relationship between the population and environment.In this study,the forest spatial structure unit was generated based on the Delaunay triangulation model(DTM),and the weights were generated using the comprehensive values of the tree diameter at breast height,total height and crown width.The distance between neighbors determined by the DTM was weighted to transform the original coordinates of trees into logical coordinates.Then,a weighted spatial pattern(WSP)was developed.After weighting,the neighboring trees were replaced,the replacement ratio was 38.3%,and there was 57.4%of the central tree.Correlation analysis showed that the uniform angle index of the WSP was significantly correlated with the tree size standard deviation under uniformity(r=0.932)and randomness(r=0.711).The DTM method not only considers the spatial distance between trees,but also considers the non-spatial attributes of trees.By changing the spatial topological relation between trees,this method further improves the spatial structure measurement of forest.展开更多
Seismic traveltime tomographic inversion has played an important role in detecting the internal structure of the solid earth. We use a set of blocks to approximate geologically complex media that cannot be well descri...Seismic traveltime tomographic inversion has played an important role in detecting the internal structure of the solid earth. We use a set of blocks to approximate geologically complex media that cannot be well described by layered models or cells. The geological body is described as an aggregate of arbitrarily shaped blocks,which are separated by triangulated interfaces. We can describe the media as homogenous or heterogeneous in each block. We define the velocities at the given rectangle grid points for each block,and the heterogeneous velocities in each block can be calculated by a linear interpolation algorithm. The parameters of the velocity grid positions are independent of the model parameterization,which is advantageous in the joint inversion of the velocities and the node depths of an interface. We implement a segmentally iterative ray tracer to calculate traveltimes in the 3D heterogeneous block models.The damped least squares method is employed in seismic traveltime inversion,which includes the partial derivatives of traveltime with respect to the depths of nodes in the triangulated interfaces and velocities defined in rectangular grids. The numerical tests indicate that the node depths of a triangulated interface and homogeneous velocity distributions can be well inverted in a stratified model.展开更多
基金Project (50925417) supported by the National Funds for Distinguished Young Scientists, ChinaProject (50830301) supported by the Key Project of National Natural Science Foundation of China
文摘A total of 153 soil samples were collected from Changsha City, China, to analyze the contents of As, Cd, Cr, Cu, Hg, Mn, Ni, Pb and Zn. A combination of sampling data, multivariate statistical method, geostatistical analysis, direct exposure method and triangulated irregular network (TIN) model was successfully employed to discriminate sources, simulate spatial distributions and evaluate children's health risks of heavy metals in soils. The results show that not all sites in Changsha city may be suitable for living without remediation. About 9.0% of the study area provided a hazard index (HI)1.0, and 1.9% had an HI2.0. Most high HIs were located in the southern and western areas. The element of arsenic and the pathway of soil ingestion were the largest contribution to potential health risks for children. This study indicates that we should attach great importance to the direct soil heavy metals exposure for children's health.
基金funded by National Natural Science Foundation of China(31570627)Hunan Forestry Science and Technology Project(XLK201740)+1 种基金Hunan Science and Technology Innovation Platform and Talent Plan(2017TP1022)Hunan Science and Technology Plan Project(2015WK3017)。
文摘It is important to quantify and analyze forest spatial patterns for studying biological characteristics,population interaction and the relationship between the population and environment.In this study,the forest spatial structure unit was generated based on the Delaunay triangulation model(DTM),and the weights were generated using the comprehensive values of the tree diameter at breast height,total height and crown width.The distance between neighbors determined by the DTM was weighted to transform the original coordinates of trees into logical coordinates.Then,a weighted spatial pattern(WSP)was developed.After weighting,the neighboring trees were replaced,the replacement ratio was 38.3%,and there was 57.4%of the central tree.Correlation analysis showed that the uniform angle index of the WSP was significantly correlated with the tree size standard deviation under uniformity(r=0.932)and randomness(r=0.711).The DTM method not only considers the spatial distance between trees,but also considers the non-spatial attributes of trees.By changing the spatial topological relation between trees,this method further improves the spatial structure measurement of forest.
基金supported financially by the Ministry of Science and Technology of China(2011CB808904)the National Natural Science Foundation of China(Nos.41021063,41174075,41004034,41174043,and 41274090)
文摘Seismic traveltime tomographic inversion has played an important role in detecting the internal structure of the solid earth. We use a set of blocks to approximate geologically complex media that cannot be well described by layered models or cells. The geological body is described as an aggregate of arbitrarily shaped blocks,which are separated by triangulated interfaces. We can describe the media as homogenous or heterogeneous in each block. We define the velocities at the given rectangle grid points for each block,and the heterogeneous velocities in each block can be calculated by a linear interpolation algorithm. The parameters of the velocity grid positions are independent of the model parameterization,which is advantageous in the joint inversion of the velocities and the node depths of an interface. We implement a segmentally iterative ray tracer to calculate traveltimes in the 3D heterogeneous block models.The damped least squares method is employed in seismic traveltime inversion,which includes the partial derivatives of traveltime with respect to the depths of nodes in the triangulated interfaces and velocities defined in rectangular grids. The numerical tests indicate that the node depths of a triangulated interface and homogeneous velocity distributions can be well inverted in a stratified model.