Lanping basin was a massif (land massif) in late Palaeozoic Era. The ocean of Jinshajiang separated it from Yangtze plate in east. Lancangjiang ocean separated it from Yunnan—Tibet plate in west. From late Permian Ep...Lanping basin was a massif (land massif) in late Palaeozoic Era. The ocean of Jinshajiang separated it from Yangtze plate in east. Lancangjiang ocean separated it from Yunnan—Tibet plate in west. From late Permian Epoch, the oceanic crust of Jinshajiang subduced the west from east, the one of Lancangjiang down went the east from west, and then the Yunnan—Tibet ancient land gradually closed to the Yangtze. In the end of the Permian Period, two continents and Lanping plate touched together, and the evolution history of the Paleotethys was end. Hercynian orogenic belt in the east and west sides of Lanping had volcanic rock colliding in early—middle Triassic Epoch. In Ladinian in middle Triassic and Carnian in late Triassic, the north side of Lanping basin formed the serial volcanic rock of spilite—quartz keratophyre because mantle\|derived magma causing by delamination rose and mixed with the constituent of continental crust. The volcanic rock overlapped the middle Triassic and late Palaeozoic stratum in angular unconformity. It was the feature of double peak or evolution from the basic to the acid. The race element distribution of volcanic rock was same as the one of tholeiite in island and inter\|arc basin. The rate of lead isotope of the volcanic rock was much higher. These points all distributed above the NHRL in Pb\|Pb. This indicated that the Pb of volcanic rock was the mantle\|derived magma mixed with crust one. The large\|area progression in Lanping rift basin begun in late Carnian.. The east side in Lanping basin developed the sedimentary system that was granule gravel (grit) rock in border facies—limestone in beach facies—black shale, and the middle had black shale, banded siliceous rock, brecciform limestone in late Carnian to Norian. The geochemistry research of siliceous rock showed that the genesis of the chert was hot water. The development of brecciform limestone was related with action of central\|axis rift. The Lanping rift basin went into consuming stage in Rhaetian Epoch of the late Triassic. The basin developed clastic rock bearing coal of continental\|oceanic alternation facies. In early Jurassic, the sedimentary area atrophied further, and the fine lacustrine sediment whose thickness was not great developed in the east of central\|axis. The west stratum of the basin in late Triassic Epoch touched directly with the one in middle Jurassic. Lanping basin was going into another evolution stage that was down\|warped basin.展开更多
文摘Lanping basin was a massif (land massif) in late Palaeozoic Era. The ocean of Jinshajiang separated it from Yangtze plate in east. Lancangjiang ocean separated it from Yunnan—Tibet plate in west. From late Permian Epoch, the oceanic crust of Jinshajiang subduced the west from east, the one of Lancangjiang down went the east from west, and then the Yunnan—Tibet ancient land gradually closed to the Yangtze. In the end of the Permian Period, two continents and Lanping plate touched together, and the evolution history of the Paleotethys was end. Hercynian orogenic belt in the east and west sides of Lanping had volcanic rock colliding in early—middle Triassic Epoch. In Ladinian in middle Triassic and Carnian in late Triassic, the north side of Lanping basin formed the serial volcanic rock of spilite—quartz keratophyre because mantle\|derived magma causing by delamination rose and mixed with the constituent of continental crust. The volcanic rock overlapped the middle Triassic and late Palaeozoic stratum in angular unconformity. It was the feature of double peak or evolution from the basic to the acid. The race element distribution of volcanic rock was same as the one of tholeiite in island and inter\|arc basin. The rate of lead isotope of the volcanic rock was much higher. These points all distributed above the NHRL in Pb\|Pb. This indicated that the Pb of volcanic rock was the mantle\|derived magma mixed with crust one. The large\|area progression in Lanping rift basin begun in late Carnian.. The east side in Lanping basin developed the sedimentary system that was granule gravel (grit) rock in border facies—limestone in beach facies—black shale, and the middle had black shale, banded siliceous rock, brecciform limestone in late Carnian to Norian. The geochemistry research of siliceous rock showed that the genesis of the chert was hot water. The development of brecciform limestone was related with action of central\|axis rift. The Lanping rift basin went into consuming stage in Rhaetian Epoch of the late Triassic. The basin developed clastic rock bearing coal of continental\|oceanic alternation facies. In early Jurassic, the sedimentary area atrophied further, and the fine lacustrine sediment whose thickness was not great developed in the east of central\|axis. The west stratum of the basin in late Triassic Epoch touched directly with the one in middle Jurassic. Lanping basin was going into another evolution stage that was down\|warped basin.