A new separation method, reactive extractive distillation, was put forward for separating water and acetic acid. The separation mechanism was analyzed through infrared spectra technique. Isobaric vapor-liquid equilibr...A new separation method, reactive extractive distillation, was put forward for separating water and acetic acid. The separation mechanism was analyzed through infrared spectra technique. Isobaric vapor-liquid equilibrium (VLE) data at 101.33 kPa for the binary or ternary systems consisting of water, acetic acid and tributylamine were measured. The activity coefficients were correlated by using Wilson, NRTL, and UNIQUAC Equations.The VLE experiment showed that tributylamine could enhance the relative volatility of water to acetic acid. An extractive distillation experiment was carried out and proved that tributylamine was a good extractive solvent.展开更多
The viscosities, η, and ultrasonic speeds, u, of pure benzene, triethylamine, (TEA) tributylamine, (TBA), and those of their binary mixtures, with benzene as common component, covering the whole composition range...The viscosities, η, and ultrasonic speeds, u, of pure benzene, triethylamine, (TEA) tributylamine, (TBA), and those of their binary mixtures, with benzene as common component, covering the whole composition range have been measured at 278.15 K, 283.15 K, 288.15 K, 293.15 K, 298.15 K, 303.15 K, 308.15 K, 313.15 K, and 318.15 K. From the experimental data the deviations in viscosity, △η, deviations in Gibbs free energy, AG, deviations in ultrasonic speed, △u, deviations in entropies, △S^*, and deviations in enthalpies, △H^*, of activation of viscous flow have been determined. The sign and magnitude of these parameters were found to be sensitive towards interactions prevailing in the studied systems. Further, the excess molar volumes, VE, were calculated using data for the binary mixtures. Moreover, theoretical values of viscosities and ultrasonic speeds of the binary mixtures were calculated using different empirical relations and theories. The results were in experimental and theoretical values. discussed in terms of average deviations (AD)展开更多
文摘A new separation method, reactive extractive distillation, was put forward for separating water and acetic acid. The separation mechanism was analyzed through infrared spectra technique. Isobaric vapor-liquid equilibrium (VLE) data at 101.33 kPa for the binary or ternary systems consisting of water, acetic acid and tributylamine were measured. The activity coefficients were correlated by using Wilson, NRTL, and UNIQUAC Equations.The VLE experiment showed that tributylamine could enhance the relative volatility of water to acetic acid. An extractive distillation experiment was carried out and proved that tributylamine was a good extractive solvent.
文摘The viscosities, η, and ultrasonic speeds, u, of pure benzene, triethylamine, (TEA) tributylamine, (TBA), and those of their binary mixtures, with benzene as common component, covering the whole composition range have been measured at 278.15 K, 283.15 K, 288.15 K, 293.15 K, 298.15 K, 303.15 K, 308.15 K, 313.15 K, and 318.15 K. From the experimental data the deviations in viscosity, △η, deviations in Gibbs free energy, AG, deviations in ultrasonic speed, △u, deviations in entropies, △S^*, and deviations in enthalpies, △H^*, of activation of viscous flow have been determined. The sign and magnitude of these parameters were found to be sensitive towards interactions prevailing in the studied systems. Further, the excess molar volumes, VE, were calculated using data for the binary mixtures. Moreover, theoretical values of viscosities and ultrasonic speeds of the binary mixtures were calculated using different empirical relations and theories. The results were in experimental and theoretical values. discussed in terms of average deviations (AD)