[Objective] The paper aimed to study the control effects of live spore preparations of Trichoderma viride strains against vegetable grey mold in greenhouse. [Method] Trichoderma viride strains NW-411 live spore prepar...[Objective] The paper aimed to study the control effects of live spore preparations of Trichoderma viride strains against vegetable grey mold in greenhouse. [Method] Trichoderma viride strains NW-411 live spore preparations were prepared by solid-state fermentation,106-107 spore/g diluent was made to conduct field control experiment,traits change of cucumber and tomato plants inoculated grey mold were investigated,control effect was calculated. [Result] Cucumber and tomato plants without dilution treatment of T. viride spores could be infected with different changes in trait. T. viride spore preparations had a significant preventive effect on greenhouse cucumber and tomato gray mold,the optimal concentration of spores was in the range of 2.3×10^6-2.3×10^7 spore/g. The incidence of cucumber and tomato plants were reduced to 4.2% and 3.1%,the incidence rate decreased 29.8% and 39.1% compared with plants without treatment,biological control effect was over 87%,and the plant growth can be enhanced obviously. [Conclusion] Live spores preparation of T. viride not only had a significant effect on grey mold,but also significantly enhanced the plants growth in greenhouse,which is a safety and environmental protection biological agent,and worthy to be widely spread in large-scale green vegetable production.展开更多
Novel agroformulations for simultaneous delivery of chemical and biologically active agents to the plants were prepared by encapsulation of Trichoderma viride spores in calcium alginate microspheres.The impact of calc...Novel agroformulations for simultaneous delivery of chemical and biologically active agents to the plants were prepared by encapsulation of Trichoderma viride spores in calcium alginate microspheres.The impact of calcium ions concentration on the viability and sporulation of T.viride spores as well as on the microsphere important physicochemical properties were investigated.Intermolecular interactions in microspheres are complex including mainly hydrogen bonds and electrostatic interactions.T.viride germination inside matrix and germ tubes penetration out of microspheres revealed calcium alginate microspheres provide a supportive environment for T.viride growth.Differences in physicochemical properties and bioactive agents release behaviour from microspheres were ascribed to the changes in microsphere structure.Fitting to Korsmeyer-Peppas empirical model revealed the underlying T.viride release mechanism as anomalous transport kinetics(a combination of two diffusion mechanisms and the Type II transport(polymer swelling and relaxation of the polymeric matrix)).The increasing amount of T.viride spores in the surrounding medium is closely related to the release from microspheres and germination.The rate controlling mechanism of calcium release is Fickian diffusion.A decrease in the release rate with increasing calcium ion concentrations is in accordance with the calcium ions effect on the strength of the alginate network structure.T.viride germination inside microsphere diminished the amount of released calcium ions and slowed release kinetics in comparison with microspheres prepared without T.viride.The results indicated investigated agroformulations have a great potential to be used for plant protection and nutrition.展开更多
This paper reports the purification and characterization of kinetic parameters of cellulase produced from Trichoderma viride under still culture solid state fermentation technique using cheap and an easily available a...This paper reports the purification and characterization of kinetic parameters of cellulase produced from Trichoderma viride under still culture solid state fermentation technique using cheap and an easily available agricultural waste material, wheat straw as growth supported substrate. Trichoderma viride was cultured in fermentation medium of wheat straw under some previously optimized growth conditions and maximum activity of 398±2.43U/mL obtained after stipulated fermentation time period. Cellulase was purified 2.33 fold with specific activity of 105U/mg in comparison to crude enzyme extract using ammonium sulfate precipitation, dialysis and Sephadex-G-100 column chromatography. The enzyme was shown to have a relative low molecular weight of 58kDa by sodium dodecyl sulphate poly-acrylamide gel electrophoresis. The purified enzyme displayed 6.5 and 55oC as an optimum pH and temperature respectively. Using carboxymethyl cellulose as substrate, the enzyme showed maximum activity (Vmax) of 148U/mL with its corresponding KM value of 68μM. Among activators/inhibitors SDS, EDTA, and Hg2+ showed inhibitory effect on purified cellulase whereas, the enzyme activated by Co2+ and Mn2+ at a concentration of 1mM. The purified cellulase was compatible with four local detergent brands with up to 20 days of shelf life at room temperature suggesting its potential as a detergent additive for improved washing therefore, it is concluded that it may be potentially useful for industrial purposes especially for detergent and laundry industry.展开更多
Plant diseases heavily affct plant growth and crop yield even in modern agriculture. Control its difficult because pathogens mutate frequently, and this leads in frequent breaking of disease resistance in commercial c...Plant diseases heavily affct plant growth and crop yield even in modern agriculture. Control its difficult because pathogens mutate frequently, and this leads in frequent breaking of disease resistance in commercial cultivars. The excessive application of chemical pesticides is not only producing pesticide-resistant pathogens, but it is harming the environment threatening the health of human beings. Therefore, the use of biological control agents (BCA) may provide an environmental friendly alternative to chemicals for plant disease control. Hypersensitive response (HR) and systemic acquired resistance (SAR) are the typical expressions of plant defense reactions. Once SAR is established,, the plants exhibits a broad-spectrum of disease resistance against pathogen attack. Researchers have identified elicitor proteins, such as elicitins and harpins, which activate plant defense reactions. It would be useful to explore the possibility of using biological control agents to induce a status of SAR in crop plants. Trichoderma viride is an ubiquitous soil saprophyte and a biological control agent acting by competition for nutrients, antibiosis, and mycoparasitism. If T. viride could be used as a producer and carrier of an elicitor protein, it may be used as a novel BCA specifically active on some plants. To test this possibility, we used cryptogein, a proteinaceous elicitor secreted by Phytophthora cryptogea, to bio-engineering T. viride . The plasmid containing the Crypt gene or its mutated form, was introduced into T. viride genome by using the restriction enzyme mediated integration (REMI) method. The transformed T. viride was able to produce the Crypt protein and to improve disease resistance when the mutants were applied on tobacco plants. In summary our study included: 1. Construction of pCSNTCC and pCSNTCCm plasmids: Crypt gene was mutated by changing the K at position 13 of Crypt into a V (the mutated form was named CryK13V) as described elsewhere. In order allow secretion of the transgenic protein in T. viride cells, a signal sequence of a chitinase gene from Trichoderma (ThChi) was fused to the 5’ end of Crypt and CryK13V. The chimeric genes were placed under the control of trpC promoter in the vector pCSN43. A hygromycin resistant gene was introduced into the vectors, thus obtaining the plasmids pCSNTCC (for Crypt gene) and pCSNTCCm (CrypK13V) . 2. Establishment of a T. viride transformation system:The optimum conditions for T. viride protoplasts isolation and regeneration from were determined. For protoplast isolation, 24 hours-old hyphae of T. viride were digested with 4 mg/mL of Glucanex in phosphate buffer (pH 6.98) for 4 hours at 30 ℃, with a protoplast yield of 4.7×107 colony forming unit/mL. The maximum regeneration rate (14.5%) was obtained in the CM medium containing 0.3 mol/L KCl and 0.3 mol/L inositol. Plasmids pCSNTCC and pCSNTCCm were transformed into the protoplasts of T. viride by a Xho I restriction enzyme-mediated integration, with an efficiency of 1-2 transformants per microgram of DNA. Thirty transformants were obtained, TV-1 to TV-20 for Crypt gene and TV-21 to TV-30 for CrypK13V gene. The presence of the hygromycin resistance gene in the transformants was determined by polymerase chain reactions. The elicitor protein was detected in the culture media by western blot analysis but not inside the cells. The result indicated that the exogenous gene was expressed in T. viride , but the transgenic protein was entirely secreted into the culture media. 3. Expression of Crypt gene in T. viride enhanced plant disease resistance:Tobacco plants (4-6 week-old) were treated with spores of the transgenic or the wild-type T. viride applied to the soil. After ten days the plants or detached leaves were inoculated with Phytophthora parasitica var nicotianae, Alternaria alternata, Pseudomonas syringae pv. tabaci (Pst), or Tobacco mosaic virus (TMV). The lesions caused by TMV were suppressed by the treatment with the transgenic T. viride as compared with the wild-type展开更多
Fusarium moniliforme Sheld.is a rice pathogenic fungus and causes the disease called Bakanae,which has increasingly damaged rice production in the recent years. Trichoderma spp. has been one of the most widely used bi...Fusarium moniliforme Sheld.is a rice pathogenic fungus and causes the disease called Bakanae,which has increasingly damaged rice production in the recent years. Trichoderma spp. has been one of the most widely used biological control agent of plant disease. By geneticaly labelling F. moniliforme with the GFP reporter gene, we have studied the antagonistic action of Trichoderma viride against this pathogenic fungus. The binary GFP reporter vector pCHF3-35S∷GFP was constructed, which carries the gfp gene driven by the CaMv35S promoter. The vector was transformed into F. moniliforme via Agrobacterium.The mycoparasitism of T.viride against F.moniliforme was tested by dual culture and examined with fluorescence microscope. The result of the dual culture showed that the T.viride maintained a strong competitive ability against F. moniliforme , by growing on the top of the pathogen colony. Fluorescence microscope observation indicated that attacked hyphae of F. moniliform were distorted, swollen or broken. This indicate an enzymatic by T.viride to degrade the host cell walls and used the cell contents as a source of nutrients (Fig 1) .展开更多
The pectin is a backbone of the plant cell wall, its network structure will systemicly resolve when the plant cell splits up and forms. The pectinase produced by Rhizoctonia mainly acts on the pectin of cell wall, and...The pectin is a backbone of the plant cell wall, its network structure will systemicly resolve when the plant cell splits up and forms. The pectinase produced by Rhizoctonia mainly acts on the pectin of cell wall, and causes the maceration of tissue and the death of protoplast. Polygalacturonase (PG) can decompose the galacturonic acid of disease tissue. The research defined the PG activities of extracellular metabolite of the different virulence Rhizoctonia isolates, and testifid the effect of Trichoderma viride to PG activities, and clarified the mechanisms of biocontrol by Trichoderma. The test methods as following: Firstly, to select the isolates of different virulence: WK-47, WK-141 and WK-160 strain of Rhizoctonia AG-D and YW-2 strain of Rhizoctonia AG1-IA and TCS-1 strain of Trichoderma viride. Secondly, to culture TCS-1 on PD, and draw a group of fermented liquid in every 24 hours, and draw 7 times. Thirdly, to culture quietly Rhizoctonia isolates with Czapek-Dox at 25℃ for 15 days, filter and centrifuge (2350 g×30 min), fetch the clear liquid, put it into the ammonium sulfate according to 60% saturation degree, put it quietly for 30 min at 4℃, centrifuge (21000 g×30 min) at 4℃, remove the clear liquid, dissolve the deposit with sodium acetate buffer (25 mmol/L, pH5.5), dialysis for 48 h in the same buffer,and change the buffer every 12 h, Fourthly, to put TCS-1 fermented broth of different times in the tubes, one mL per a tube, add 0.5 mL PG to every tube, react for 4 h in 30 ℃ water, the same time fetch the test tube filled with the same treated liquid that was not dealed in 30℃ water.Finally,to testify PG activities with DNS’s test. In all, PG of Rhizoctonia had high activities and virulence. The conrtrol efficacy of T.viride to PG activities of WK-47, WK-141, WK-160 and YW-2 were 95%,94%,95%,92% separately, fermented time had a great influence to control efficacy, the third fermented broth did the best. Through effect to PG activities T. viride can reduce the virulence of Rhizoctonia, and protect the hosts. The specific mechanism, qualitative and quantitative research of antagonistic substance in the fermented broth will be further carried out.展开更多
In this study we describe a novel dark-green strain of Trichoderma viride exhibiting complete ensemble of cellulase, hemicellulase and ligninase activities on specific plate assays. To assess the cellulase production ...In this study we describe a novel dark-green strain of Trichoderma viride exhibiting complete ensemble of cellulase, hemicellulase and ligninase activities on specific plate assays. To assess the cellulase production in detail, basal salt medium (BSM) was fortified with synthetic (carboxymethyl cellulose (CMC), glucose, sucrose, dextrose, lactose or maltose) and natural (flours of banana, banana peel, jack seed, potato or tapioca) carbon as well as nitrogen (yeast extract, beef extract, peptone, NaNO3 or NH4NO3) sources. Temperature and pH optima were 28°C and 4, respectively for the growth of the fungus in CMC-BSM with 137 U/mL cellulase activity, which was enhanced to 173 U/mL at 1.25% CMC concentration. Flours of potato and banana peel supported comparable yields of cellulase to that of CMC, while sodium nitrate was the preferred nitrogen source. The water soluble bluish-green pigment (a probable siderophore) extracted from the spores showed an absorption maximum at 292 nm. To sum up, the complete lignocellulolytic potential of this fungus offers great industrial significance, coupled with the production of a new pigment.展开更多
Ammonia(NH3) volatilization is one of the primary pathways of nitrogen(N) loss from soils after chemical fertilizer is applied, especially from the alkaline soils in Northern China, which results in lower efficien...Ammonia(NH3) volatilization is one of the primary pathways of nitrogen(N) loss from soils after chemical fertilizer is applied, especially from the alkaline soils in Northern China, which results in lower efficiency for chemical fertilizers. Therefore, we conducted an incubation experiment using an alkaline soil from Tianjin(p H 8.37–8.43) to evaluate the suppression effect of Trichoderma viride(T. viride) biofertilizer on NH3 volatilization, and compared the differences in microbial community structure among all samples. The results showed that viable T. viride biofertilizer(T) decreased NH3 volatilization by 42.21% compared with conventional fertilizer((CK), urea), while nonviable T. viride biofertilizer(TS) decreased NH3 volatilization by 32.42%. NH3 volatilization was significantly higher in CK and sweet potato starch wastewater(SPSW) treatments during the peak period. T. viride biofertilizer also improved the transfer of ammonium from soil to sweet sorghum. Plant dry weights increased 91.23% and 61.08% for T and TS, respectively, compared to CK. Moreover, T. viride biofertilizer enhanced nitrification by increasing the abundance of ammonium-oxidizing archaea(AOA) and ammonium-oxidizing bacteria(AOB). The results of high-throughput sequencing indicated that the microbial community structure and composition were significantly changed by the application of T. viride biofertilizer. This study demonstrated the immense potential of T. viride biofertilizer in reducing NH3 volatilization from alkaline soil and simultaneously improving the utilization of fertilizer N by sweet sorghum.展开更多
Objective The aim was to construct bioengineering strains that could degrade the cellulosic solid waste. Method The cDNA of endo-β-glucanase III of Trichoderma vi ride AS313711 was cloned by RT-PCR method. After sequ...Objective The aim was to construct bioengineering strains that could degrade the cellulosic solid waste. Method The cDNA of endo-β-glucanase III of Trichoderma vi ride AS313711 was cloned by RT-PCR method. After sequenced, this gene was constructed to expression vector pESP-2, and then the plasmid was transformed into competent cell of cerevisiae fermentum by electric shock, the transformant was then obtained. The enzyme activity of this transformant at the different temperatures and pH was measured by DNS method. Result The length of ORF of EG III was 1 257 bp, encoding 418 amino acids, while the deduced molecular weight was 44.1 × 103 kD. Conclusion The enzyme activity of EG III was the highest when it was at PH 4.9 and tempeture was of 60℃. Then the corresponding enzyme activity was about 100%.展开更多
基金Supported by Scientific and Technological Project in Shaanxi Province(2001K02-G7)~~
文摘[Objective] The paper aimed to study the control effects of live spore preparations of Trichoderma viride strains against vegetable grey mold in greenhouse. [Method] Trichoderma viride strains NW-411 live spore preparations were prepared by solid-state fermentation,106-107 spore/g diluent was made to conduct field control experiment,traits change of cucumber and tomato plants inoculated grey mold were investigated,control effect was calculated. [Result] Cucumber and tomato plants without dilution treatment of T. viride spores could be infected with different changes in trait. T. viride spore preparations had a significant preventive effect on greenhouse cucumber and tomato gray mold,the optimal concentration of spores was in the range of 2.3×10^6-2.3×10^7 spore/g. The incidence of cucumber and tomato plants were reduced to 4.2% and 3.1%,the incidence rate decreased 29.8% and 39.1% compared with plants without treatment,biological control effect was over 87%,and the plant growth can be enhanced obviously. [Conclusion] Live spores preparation of T. viride not only had a significant effect on grey mold,but also significantly enhanced the plants growth in greenhouse,which is a safety and environmental protection biological agent,and worthy to be widely spread in large-scale green vegetable production.
基金funded by the Croatian Science Foundation,Croatia(UIP-2014-501 09-6462)
文摘Novel agroformulations for simultaneous delivery of chemical and biologically active agents to the plants were prepared by encapsulation of Trichoderma viride spores in calcium alginate microspheres.The impact of calcium ions concentration on the viability and sporulation of T.viride spores as well as on the microsphere important physicochemical properties were investigated.Intermolecular interactions in microspheres are complex including mainly hydrogen bonds and electrostatic interactions.T.viride germination inside matrix and germ tubes penetration out of microspheres revealed calcium alginate microspheres provide a supportive environment for T.viride growth.Differences in physicochemical properties and bioactive agents release behaviour from microspheres were ascribed to the changes in microsphere structure.Fitting to Korsmeyer-Peppas empirical model revealed the underlying T.viride release mechanism as anomalous transport kinetics(a combination of two diffusion mechanisms and the Type II transport(polymer swelling and relaxation of the polymeric matrix)).The increasing amount of T.viride spores in the surrounding medium is closely related to the release from microspheres and germination.The rate controlling mechanism of calcium release is Fickian diffusion.A decrease in the release rate with increasing calcium ion concentrations is in accordance with the calcium ions effect on the strength of the alginate network structure.T.viride germination inside microsphere diminished the amount of released calcium ions and slowed release kinetics in comparison with microspheres prepared without T.viride.The results indicated investigated agroformulations have a great potential to be used for plant protection and nutrition.
文摘This paper reports the purification and characterization of kinetic parameters of cellulase produced from Trichoderma viride under still culture solid state fermentation technique using cheap and an easily available agricultural waste material, wheat straw as growth supported substrate. Trichoderma viride was cultured in fermentation medium of wheat straw under some previously optimized growth conditions and maximum activity of 398±2.43U/mL obtained after stipulated fermentation time period. Cellulase was purified 2.33 fold with specific activity of 105U/mg in comparison to crude enzyme extract using ammonium sulfate precipitation, dialysis and Sephadex-G-100 column chromatography. The enzyme was shown to have a relative low molecular weight of 58kDa by sodium dodecyl sulphate poly-acrylamide gel electrophoresis. The purified enzyme displayed 6.5 and 55oC as an optimum pH and temperature respectively. Using carboxymethyl cellulose as substrate, the enzyme showed maximum activity (Vmax) of 148U/mL with its corresponding KM value of 68μM. Among activators/inhibitors SDS, EDTA, and Hg2+ showed inhibitory effect on purified cellulase whereas, the enzyme activated by Co2+ and Mn2+ at a concentration of 1mM. The purified cellulase was compatible with four local detergent brands with up to 20 days of shelf life at room temperature suggesting its potential as a detergent additive for improved washing therefore, it is concluded that it may be potentially useful for industrial purposes especially for detergent and laundry industry.
文摘Plant diseases heavily affct plant growth and crop yield even in modern agriculture. Control its difficult because pathogens mutate frequently, and this leads in frequent breaking of disease resistance in commercial cultivars. The excessive application of chemical pesticides is not only producing pesticide-resistant pathogens, but it is harming the environment threatening the health of human beings. Therefore, the use of biological control agents (BCA) may provide an environmental friendly alternative to chemicals for plant disease control. Hypersensitive response (HR) and systemic acquired resistance (SAR) are the typical expressions of plant defense reactions. Once SAR is established,, the plants exhibits a broad-spectrum of disease resistance against pathogen attack. Researchers have identified elicitor proteins, such as elicitins and harpins, which activate plant defense reactions. It would be useful to explore the possibility of using biological control agents to induce a status of SAR in crop plants. Trichoderma viride is an ubiquitous soil saprophyte and a biological control agent acting by competition for nutrients, antibiosis, and mycoparasitism. If T. viride could be used as a producer and carrier of an elicitor protein, it may be used as a novel BCA specifically active on some plants. To test this possibility, we used cryptogein, a proteinaceous elicitor secreted by Phytophthora cryptogea, to bio-engineering T. viride . The plasmid containing the Crypt gene or its mutated form, was introduced into T. viride genome by using the restriction enzyme mediated integration (REMI) method. The transformed T. viride was able to produce the Crypt protein and to improve disease resistance when the mutants were applied on tobacco plants. In summary our study included: 1. Construction of pCSNTCC and pCSNTCCm plasmids: Crypt gene was mutated by changing the K at position 13 of Crypt into a V (the mutated form was named CryK13V) as described elsewhere. In order allow secretion of the transgenic protein in T. viride cells, a signal sequence of a chitinase gene from Trichoderma (ThChi) was fused to the 5’ end of Crypt and CryK13V. The chimeric genes were placed under the control of trpC promoter in the vector pCSN43. A hygromycin resistant gene was introduced into the vectors, thus obtaining the plasmids pCSNTCC (for Crypt gene) and pCSNTCCm (CrypK13V) . 2. Establishment of a T. viride transformation system:The optimum conditions for T. viride protoplasts isolation and regeneration from were determined. For protoplast isolation, 24 hours-old hyphae of T. viride were digested with 4 mg/mL of Glucanex in phosphate buffer (pH 6.98) for 4 hours at 30 ℃, with a protoplast yield of 4.7×107 colony forming unit/mL. The maximum regeneration rate (14.5%) was obtained in the CM medium containing 0.3 mol/L KCl and 0.3 mol/L inositol. Plasmids pCSNTCC and pCSNTCCm were transformed into the protoplasts of T. viride by a Xho I restriction enzyme-mediated integration, with an efficiency of 1-2 transformants per microgram of DNA. Thirty transformants were obtained, TV-1 to TV-20 for Crypt gene and TV-21 to TV-30 for CrypK13V gene. The presence of the hygromycin resistance gene in the transformants was determined by polymerase chain reactions. The elicitor protein was detected in the culture media by western blot analysis but not inside the cells. The result indicated that the exogenous gene was expressed in T. viride , but the transgenic protein was entirely secreted into the culture media. 3. Expression of Crypt gene in T. viride enhanced plant disease resistance:Tobacco plants (4-6 week-old) were treated with spores of the transgenic or the wild-type T. viride applied to the soil. After ten days the plants or detached leaves were inoculated with Phytophthora parasitica var nicotianae, Alternaria alternata, Pseudomonas syringae pv. tabaci (Pst), or Tobacco mosaic virus (TMV). The lesions caused by TMV were suppressed by the treatment with the transgenic T. viride as compared with the wild-type
文摘Fusarium moniliforme Sheld.is a rice pathogenic fungus and causes the disease called Bakanae,which has increasingly damaged rice production in the recent years. Trichoderma spp. has been one of the most widely used biological control agent of plant disease. By geneticaly labelling F. moniliforme with the GFP reporter gene, we have studied the antagonistic action of Trichoderma viride against this pathogenic fungus. The binary GFP reporter vector pCHF3-35S∷GFP was constructed, which carries the gfp gene driven by the CaMv35S promoter. The vector was transformed into F. moniliforme via Agrobacterium.The mycoparasitism of T.viride against F.moniliforme was tested by dual culture and examined with fluorescence microscope. The result of the dual culture showed that the T.viride maintained a strong competitive ability against F. moniliforme , by growing on the top of the pathogen colony. Fluorescence microscope observation indicated that attacked hyphae of F. moniliform were distorted, swollen or broken. This indicate an enzymatic by T.viride to degrade the host cell walls and used the cell contents as a source of nutrients (Fig 1) .
文摘The pectin is a backbone of the plant cell wall, its network structure will systemicly resolve when the plant cell splits up and forms. The pectinase produced by Rhizoctonia mainly acts on the pectin of cell wall, and causes the maceration of tissue and the death of protoplast. Polygalacturonase (PG) can decompose the galacturonic acid of disease tissue. The research defined the PG activities of extracellular metabolite of the different virulence Rhizoctonia isolates, and testifid the effect of Trichoderma viride to PG activities, and clarified the mechanisms of biocontrol by Trichoderma. The test methods as following: Firstly, to select the isolates of different virulence: WK-47, WK-141 and WK-160 strain of Rhizoctonia AG-D and YW-2 strain of Rhizoctonia AG1-IA and TCS-1 strain of Trichoderma viride. Secondly, to culture TCS-1 on PD, and draw a group of fermented liquid in every 24 hours, and draw 7 times. Thirdly, to culture quietly Rhizoctonia isolates with Czapek-Dox at 25℃ for 15 days, filter and centrifuge (2350 g×30 min), fetch the clear liquid, put it into the ammonium sulfate according to 60% saturation degree, put it quietly for 30 min at 4℃, centrifuge (21000 g×30 min) at 4℃, remove the clear liquid, dissolve the deposit with sodium acetate buffer (25 mmol/L, pH5.5), dialysis for 48 h in the same buffer,and change the buffer every 12 h, Fourthly, to put TCS-1 fermented broth of different times in the tubes, one mL per a tube, add 0.5 mL PG to every tube, react for 4 h in 30 ℃ water, the same time fetch the test tube filled with the same treated liquid that was not dealed in 30℃ water.Finally,to testify PG activities with DNS’s test. In all, PG of Rhizoctonia had high activities and virulence. The conrtrol efficacy of T.viride to PG activities of WK-47, WK-141, WK-160 and YW-2 were 95%,94%,95%,92% separately, fermented time had a great influence to control efficacy, the third fermented broth did the best. Through effect to PG activities T. viride can reduce the virulence of Rhizoctonia, and protect the hosts. The specific mechanism, qualitative and quantitative research of antagonistic substance in the fermented broth will be further carried out.
文摘In this study we describe a novel dark-green strain of Trichoderma viride exhibiting complete ensemble of cellulase, hemicellulase and ligninase activities on specific plate assays. To assess the cellulase production in detail, basal salt medium (BSM) was fortified with synthetic (carboxymethyl cellulose (CMC), glucose, sucrose, dextrose, lactose or maltose) and natural (flours of banana, banana peel, jack seed, potato or tapioca) carbon as well as nitrogen (yeast extract, beef extract, peptone, NaNO3 or NH4NO3) sources. Temperature and pH optima were 28°C and 4, respectively for the growth of the fungus in CMC-BSM with 137 U/mL cellulase activity, which was enhanced to 173 U/mL at 1.25% CMC concentration. Flours of potato and banana peel supported comparable yields of cellulase to that of CMC, while sodium nitrate was the preferred nitrogen source. The water soluble bluish-green pigment (a probable siderophore) extracted from the spores showed an absorption maximum at 292 nm. To sum up, the complete lignocellulolytic potential of this fungus offers great industrial significance, coupled with the production of a new pigment.
基金supported by the National Science Fund Projects (Nos. 41371266 and 31670507)Innovation in Cross-functional Team Program of the Chinese Academy of Sciences (No. 2015)+1 种基金the Key Research Program of Chinese Academy of Sciences (No. ZDRW-ZS-2016-5)the Key State Science and Technology Program of China (No. 2015ZX07206-006)
文摘Ammonia(NH3) volatilization is one of the primary pathways of nitrogen(N) loss from soils after chemical fertilizer is applied, especially from the alkaline soils in Northern China, which results in lower efficiency for chemical fertilizers. Therefore, we conducted an incubation experiment using an alkaline soil from Tianjin(p H 8.37–8.43) to evaluate the suppression effect of Trichoderma viride(T. viride) biofertilizer on NH3 volatilization, and compared the differences in microbial community structure among all samples. The results showed that viable T. viride biofertilizer(T) decreased NH3 volatilization by 42.21% compared with conventional fertilizer((CK), urea), while nonviable T. viride biofertilizer(TS) decreased NH3 volatilization by 32.42%. NH3 volatilization was significantly higher in CK and sweet potato starch wastewater(SPSW) treatments during the peak period. T. viride biofertilizer also improved the transfer of ammonium from soil to sweet sorghum. Plant dry weights increased 91.23% and 61.08% for T and TS, respectively, compared to CK. Moreover, T. viride biofertilizer enhanced nitrification by increasing the abundance of ammonium-oxidizing archaea(AOA) and ammonium-oxidizing bacteria(AOB). The results of high-throughput sequencing indicated that the microbial community structure and composition were significantly changed by the application of T. viride biofertilizer. This study demonstrated the immense potential of T. viride biofertilizer in reducing NH3 volatilization from alkaline soil and simultaneously improving the utilization of fertilizer N by sweet sorghum.
文摘Objective The aim was to construct bioengineering strains that could degrade the cellulosic solid waste. Method The cDNA of endo-β-glucanase III of Trichoderma vi ride AS313711 was cloned by RT-PCR method. After sequenced, this gene was constructed to expression vector pESP-2, and then the plasmid was transformed into competent cell of cerevisiae fermentum by electric shock, the transformant was then obtained. The enzyme activity of this transformant at the different temperatures and pH was measured by DNS method. Result The length of ORF of EG III was 1 257 bp, encoding 418 amino acids, while the deduced molecular weight was 44.1 × 103 kD. Conclusion The enzyme activity of EG III was the highest when it was at PH 4.9 and tempeture was of 60℃. Then the corresponding enzyme activity was about 100%.