Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analy...Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.展开更多
A trigonometric series expansion method and two similar modified methods for the Orr-Sommerfeld equation are presented. These methods use the trigonometric series expansion with an auxiliary function added to the high...A trigonometric series expansion method and two similar modified methods for the Orr-Sommerfeld equation are presented. These methods use the trigonometric series expansion with an auxiliary function added to the highest order derivative of the unknown function and generate the lower order derivatives through successive integra- tions. The proposed methods are easy to implement because of the simplicity of the chosen basis functions. By solving the plane Poiseuille flow (PPF), plane Couette flow (PCF), and Blasius boundary layer flow with several homogeneous boundary conditions, it is shown that these methods yield results with the same accuracy as that given by the conventional Chebyshev collocation method but with better robustness, and that ob- tained by the finite difference method but with fewer modal number.展开更多
This paper presents an interpolation-based method(IBM)for approximating some trigonometric functions or their integrals as well.It provides two-sided bounds for each function,which also achieves much better approximat...This paper presents an interpolation-based method(IBM)for approximating some trigonometric functions or their integrals as well.It provides two-sided bounds for each function,which also achieves much better approximation effects than those of prevailing methods.In principle,the IBM can be applied for bounding more bounded smooth functions and their integrals as well,and its applications include approximating the integral of sin(x)/x function and improving the famous square root inequalities.展开更多
In a teaching experiment, Japanese Grade 9 students investigated how to measure the height of an aerial balloon using different models involving angles and distances, and also to evaluate the models they developed. As...In a teaching experiment, Japanese Grade 9 students investigated how to measure the height of an aerial balloon using different models involving angles and distances, and also to evaluate the models they developed. As novices to mathematical modelling, they needed to decide which of several possible models were both valid and practicable, and the errors in measurement that are likely to arise. Opportunities to construct and use paper models, as scale reductions of the real situation, and discussing their results in small groups were effective in moving forward the thinking of many students on the dimensions mentioned above. While students were less able to identify different sources of errors, many came to appreciate the need to learn trigonometric techniques that are more suitable in dealing with problems of this kind.展开更多
In view of the limitation of the difference method,the adjustment model of CPⅢprecise trigonometric leveling control network based on the parameter method was proposed in the present paper.The experiment results show...In view of the limitation of the difference method,the adjustment model of CPⅢprecise trigonometric leveling control network based on the parameter method was proposed in the present paper.The experiment results show that this model has a simple algorithm and high data utilization,avoids the negative influences caused by the correlation among the data acquired from the difference method and its accuracy is improved compared with the difference method.In addition,the strict weight of CPⅢprecise trigonometric leveling control network was also discussed in this paper.The results demonstrate that the ranging error of trigonometric leveling can be neglected when the vertical angle is less than 3 degrees.The accuracy of CPⅢprecise trigonometric leveling control network has not changed significantly before and after strict weight.展开更多
In this paper,a proficient numerical technique for the time-fractional telegraph equation(TFTE)is proposed.The chief aim of this paper is to utilize a relatively new type of B-spline called the cubic trigonometric B-s...In this paper,a proficient numerical technique for the time-fractional telegraph equation(TFTE)is proposed.The chief aim of this paper is to utilize a relatively new type of B-spline called the cubic trigonometric B-spline for the proposed scheme.This technique is based on finite difference formulation for the Caputo time-fractional derivative and cubic trigonometric B-splines based technique for the derivatives in space.A stability analysis of the scheme is presented to confirm that the errors do not amplify.A convergence analysis is also presented.Computational experiments are carried out in addition to verify the theoretical analysis.Numerical results are contrasted with a few present techniques and it is concluded that the presented scheme is progressively right and more compelling.展开更多
The Dirac equation is solved to obtain its approximate bound states for a spin-1/2 particle in the presence of trigonometric Poeschl-Teller (tPT) potential including a Coulomb-like tensor interaction with arbitrary ...The Dirac equation is solved to obtain its approximate bound states for a spin-1/2 particle in the presence of trigonometric Poeschl-Teller (tPT) potential including a Coulomb-like tensor interaction with arbitrary spin-orbit quantum number κ using an approximation scheme to substitute the centrifugal terms κ(κ± i 1)r^-2. In view of spin and pseudo-spin (p-spin) symmetries, the relativistic energy eigenvalues and the corresponding two-component wave functions of a particle moving in the field of attractive and repulsive tPT potentials are obtained using the asymptotic iteration method (AIM). We present numerical results in the absence and presence of tensor coupling A and for various values of spin and p-spin constants and quantum numbers n and κ. The non-relativistic limit is also obtained.展开更多
In this work, the (G'/G)-expansion method is proposed for constructing more general exact solutions of two general form of Burgers type equation arising in fluid mechanics namely, Burgers-Korteweg-de Vries (Burger...In this work, the (G'/G)-expansion method is proposed for constructing more general exact solutions of two general form of Burgers type equation arising in fluid mechanics namely, Burgers-Korteweg-de Vries (Burgers-KdV) and Burger-Fisher equations. Our work is motivated by the fact that the (G'/G)-expansion method provides not only more general forms of solutions but also periodic and solitary waves. If we set the parameters in the obtained wider set of solutions as special values, then some previously known solutions can be recovered. The method appears to be easier and faster by means of a symbolic computation system.展开更多
A generalized F-expansion method is introduced and applied to (3+ 1)-dimensional Kadomstev-Petviashvili(KP) equation. As a result, some new Jacobi elliptic function solutions of the equation are found, from which the ...A generalized F-expansion method is introduced and applied to (3+ 1)-dimensional Kadomstev-Petviashvili(KP) equation. As a result, some new Jacobi elliptic function solutions of the equation are found, from which the trigonometric function solutions and the solitary wave solutions can be obtained. The method can also be extended to other types of nonlinear evolution equations in mathematical physics.展开更多
The aim of this paper is to investigate the numerical solution of the hypersingular integral equation reduced by the harmonic equation. First, we transform the hypersingular integral equation into 2π-periodic hypersi...The aim of this paper is to investigate the numerical solution of the hypersingular integral equation reduced by the harmonic equation. First, we transform the hypersingular integral equation into 2π-periodic hypersingular integral equation with the map x=cot(θ/2). Second, we initiate the study of the multiscale Galerkin method for the 2π-periodic hypersingular integral equation. The trigonometric wavelets are used as trial functions. Consequently, the 2j+1 × 2j+1 stiffness matrix Kj can be partitioned j×j block matrices. Furthermore, these block matrices are zeros except main diagonal block matrices. These main diagonal block matrices are symmetrical and circulant matrices, and hence the solution of the associated linear algebraic system can be solved with the fast Fourier transform and the inverse fast Fourier transform instead of the inverse matrix. Finally, we provide several numerical examples to demonstrate our method has good accuracy even though the exact solutions are multi-peak and almost singular.展开更多
In this paper, by means of the variable-coefficient mapping method based on elliptical equation, we obtain explicit solutions of nonlinear Schrodinger equation with variable-coefficient. These solutions include Jacobi...In this paper, by means of the variable-coefficient mapping method based on elliptical equation, we obtain explicit solutions of nonlinear Schrodinger equation with variable-coefficient. These solutions include Jacobian elliptic function solutions, solitary wave solutions, soliton-like solutions, and trigonometric function solutions, among which some are found for the first time. Six figures are given to illustrate some features of these solutions. The method can be applied to other nonlinear evolution equations in mathematical physics.展开更多
In this paper,we construct exact solutions for the (2+1)-dimensional Boiti-Leon-Pempinelle equation byusing the (G'/G)-expansion method,and with the help of Maple.As a result,non-travelling wave solutions with thr...In this paper,we construct exact solutions for the (2+1)-dimensional Boiti-Leon-Pempinelle equation byusing the (G'/G)-expansion method,and with the help of Maple.As a result,non-travelling wave solutions with threearbitrary functions are obtained including hyperbolic function solutions,trigonometric function solutions,and rationalsolutions.This method can be applied to other higher-dimensional nonlinear partial differential equations.展开更多
In this work, the (G,/G)- --expansion method is proposed for constructing more general exact solutions of the (2 + 1)--dimensional Kadomtsev-Petviashvili (KP) equation and its generalized forms. Our work is motivated ...In this work, the (G,/G)- --expansion method is proposed for constructing more general exact solutions of the (2 + 1)--dimensional Kadomtsev-Petviashvili (KP) equation and its generalized forms. Our work is motivated by the fact that the (G,/G)---expansion method provides not only more general forms of solutions but also periodic and solitary waves. If we set the parameters in the obtained wider set of solutions as special values, then some previously known solutions can be recovered. The method appears to be easier and faster by means of a symbolic computation system.展开更多
基金supported by the Na-tional Natural Science Foundation of China(No.52272369).
文摘Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.
基金supported by the National Natural Science Foundation of China(Nos.11221062,11521091,and 91752203)
文摘A trigonometric series expansion method and two similar modified methods for the Orr-Sommerfeld equation are presented. These methods use the trigonometric series expansion with an auxiliary function added to the highest order derivative of the unknown function and generate the lower order derivatives through successive integra- tions. The proposed methods are easy to implement because of the simplicity of the chosen basis functions. By solving the plane Poiseuille flow (PPF), plane Couette flow (PCF), and Blasius boundary layer flow with several homogeneous boundary conditions, it is shown that these methods yield results with the same accuracy as that given by the conventional Chebyshev collocation method but with better robustness, and that ob- tained by the finite difference method but with fewer modal number.
基金Supported by the National Natural Science Foundation of China(61672009,61502130).
文摘This paper presents an interpolation-based method(IBM)for approximating some trigonometric functions or their integrals as well.It provides two-sided bounds for each function,which also achieves much better approximation effects than those of prevailing methods.In principle,the IBM can be applied for bounding more bounded smooth functions and their integrals as well,and its applications include approximating the integral of sin(x)/x function and improving the famous square root inequalities.
文摘In a teaching experiment, Japanese Grade 9 students investigated how to measure the height of an aerial balloon using different models involving angles and distances, and also to evaluate the models they developed. As novices to mathematical modelling, they needed to decide which of several possible models were both valid and practicable, and the errors in measurement that are likely to arise. Opportunities to construct and use paper models, as scale reductions of the real situation, and discussing their results in small groups were effective in moving forward the thinking of many students on the dimensions mentioned above. While students were less able to identify different sources of errors, many came to appreciate the need to learn trigonometric techniques that are more suitable in dealing with problems of this kind.
基金National Natural Science Foundation of China(No.41661091)。
文摘In view of the limitation of the difference method,the adjustment model of CPⅢprecise trigonometric leveling control network based on the parameter method was proposed in the present paper.The experiment results show that this model has a simple algorithm and high data utilization,avoids the negative influences caused by the correlation among the data acquired from the difference method and its accuracy is improved compared with the difference method.In addition,the strict weight of CPⅢprecise trigonometric leveling control network was also discussed in this paper.The results demonstrate that the ranging error of trigonometric leveling can be neglected when the vertical angle is less than 3 degrees.The accuracy of CPⅢprecise trigonometric leveling control network has not changed significantly before and after strict weight.
文摘In this paper,a proficient numerical technique for the time-fractional telegraph equation(TFTE)is proposed.The chief aim of this paper is to utilize a relatively new type of B-spline called the cubic trigonometric B-spline for the proposed scheme.This technique is based on finite difference formulation for the Caputo time-fractional derivative and cubic trigonometric B-splines based technique for the derivatives in space.A stability analysis of the scheme is presented to confirm that the errors do not amplify.A convergence analysis is also presented.Computational experiments are carried out in addition to verify the theoretical analysis.Numerical results are contrasted with a few present techniques and it is concluded that the presented scheme is progressively right and more compelling.
文摘The Dirac equation is solved to obtain its approximate bound states for a spin-1/2 particle in the presence of trigonometric Poeschl-Teller (tPT) potential including a Coulomb-like tensor interaction with arbitrary spin-orbit quantum number κ using an approximation scheme to substitute the centrifugal terms κ(κ± i 1)r^-2. In view of spin and pseudo-spin (p-spin) symmetries, the relativistic energy eigenvalues and the corresponding two-component wave functions of a particle moving in the field of attractive and repulsive tPT potentials are obtained using the asymptotic iteration method (AIM). We present numerical results in the absence and presence of tensor coupling A and for various values of spin and p-spin constants and quantum numbers n and κ. The non-relativistic limit is also obtained.
文摘In this work, the (G'/G)-expansion method is proposed for constructing more general exact solutions of two general form of Burgers type equation arising in fluid mechanics namely, Burgers-Korteweg-de Vries (Burgers-KdV) and Burger-Fisher equations. Our work is motivated by the fact that the (G'/G)-expansion method provides not only more general forms of solutions but also periodic and solitary waves. If we set the parameters in the obtained wider set of solutions as special values, then some previously known solutions can be recovered. The method appears to be easier and faster by means of a symbolic computation system.
文摘A generalized F-expansion method is introduced and applied to (3+ 1)-dimensional Kadomstev-Petviashvili(KP) equation. As a result, some new Jacobi elliptic function solutions of the equation are found, from which the trigonometric function solutions and the solitary wave solutions can be obtained. The method can also be extended to other types of nonlinear evolution equations in mathematical physics.
文摘The aim of this paper is to investigate the numerical solution of the hypersingular integral equation reduced by the harmonic equation. First, we transform the hypersingular integral equation into 2π-periodic hypersingular integral equation with the map x=cot(θ/2). Second, we initiate the study of the multiscale Galerkin method for the 2π-periodic hypersingular integral equation. The trigonometric wavelets are used as trial functions. Consequently, the 2j+1 × 2j+1 stiffness matrix Kj can be partitioned j×j block matrices. Furthermore, these block matrices are zeros except main diagonal block matrices. These main diagonal block matrices are symmetrical and circulant matrices, and hence the solution of the associated linear algebraic system can be solved with the fast Fourier transform and the inverse fast Fourier transform instead of the inverse matrix. Finally, we provide several numerical examples to demonstrate our method has good accuracy even though the exact solutions are multi-peak and almost singular.
基金The project supported by the Natural Science Foundation of Zhejiang Province of China under Grant No. Y605312.
文摘In this paper, by means of the variable-coefficient mapping method based on elliptical equation, we obtain explicit solutions of nonlinear Schrodinger equation with variable-coefficient. These solutions include Jacobian elliptic function solutions, solitary wave solutions, soliton-like solutions, and trigonometric function solutions, among which some are found for the first time. Six figures are given to illustrate some features of these solutions. The method can be applied to other nonlinear evolution equations in mathematical physics.
基金Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1410800the Science Foundation of Key Laboratory of Mathematics Mechanization under Grant No.KLMM0806+1 种基金the Shanghai Leading Academic Discipline Project under Grant No.J50101Key Disciplines of Shanghai Municipality under Grant No.S30104
文摘In this paper,we construct exact solutions for the (2+1)-dimensional Boiti-Leon-Pempinelle equation byusing the (G'/G)-expansion method,and with the help of Maple.As a result,non-travelling wave solutions with threearbitrary functions are obtained including hyperbolic function solutions,trigonometric function solutions,and rationalsolutions.This method can be applied to other higher-dimensional nonlinear partial differential equations.
文摘In this work, the (G,/G)- --expansion method is proposed for constructing more general exact solutions of the (2 + 1)--dimensional Kadomtsev-Petviashvili (KP) equation and its generalized forms. Our work is motivated by the fact that the (G,/G)---expansion method provides not only more general forms of solutions but also periodic and solitary waves. If we set the parameters in the obtained wider set of solutions as special values, then some previously known solutions can be recovered. The method appears to be easier and faster by means of a symbolic computation system.