Geostatistics combined with GIS was applied to assess the spatial distribution of nematode trophic groups following two contrasting soil uses in the black soil region of Northeast China. Two plots, one with fallow for...Geostatistics combined with GIS was applied to assess the spatial distribution of nematode trophic groups following two contrasting soil uses in the black soil region of Northeast China. Two plots, one with fallow for 12 years and the other cultivated, were marked on regular square grids with 2-m spacing. Soil samples were collected from each sampling point, nematodes were extracted from these samples and classified into four trophic groups: bacterivores, fungivores, plant parasites, and omnivores/predators. The numbers of total nematodes and trophic groups analyzed had normal distributions on both fallow and cultivated plots. The absolute abundances of total nematodes and trophic groups were observed to be much more homogeneous on cultivated plot than on fallow one. Geostatistical analysis showed that the densities of total nematodes and trophic groups on both fallow and cultivated plots exhibited spatial dependence at the sampled scale and their experimental semivariograms were adjusted to a spherical or exponential model, except those of bacterivores and fungivores on cultivated plot. The spatial distribution of nematode trophic groups was found to be different for the two land uses, indicating that cultivation changed the native condition for soil nematode activities.展开更多
A field investigation was conducted at the Shenyang Experimental Station of Ecology, Chinese Academy of Sciences, in an aquic brown soil of Northeast China under three land use types (cropland, abandoned cropland, and...A field investigation was conducted at the Shenyang Experimental Station of Ecology, Chinese Academy of Sciences, in an aquic brown soil of Northeast China under three land use types (cropland, abandoned cropland, and woodland) in order to evaluate whether the vertical distribution and seasonal fluctuation for the number of total nematodes and trophic groups could reflect soil ecosystem differences and to determine the relationships between soil chemical properties and soil nematodes. The majority of soil nematodes were present in the 0-20 cm soil layers, and for these land use types plant parasites were the most abundant trophic group. In the abandoned cropland the numbers of plant parasites reached a peak on the August sampling date, whereas the cropland and woodland peaked on the October sampling date. Meanwhile, in all land use types the number of total nematodes, bacterivores, plant parasites, and omnivores-predators was negatively (P < 0.05, except for bacterivores in cropland, which was not significant) correlated with bulk density, and positively (P < 0.05, except for fungivores in abandoned cropland, which was not significant) correlated with total organic carbon and total nitrogen.展开更多
The spatial variability of total soil nematodes and trophic groups in bare and fallow plots in Shenyang Experi-mental Station of Ecology,ChineseAcademy of Sciences was examined using geostatistics combined with classi...The spatial variability of total soil nematodes and trophic groups in bare and fallow plots in Shenyang Experi-mental Station of Ecology,ChineseAcademy of Sciences was examined using geostatistics combined with classic statistics.Results showed that the soil pH value had a negative effect on plant-parasites in both bare and fallow plots;the mean number of total nematodes was significantly higher in fallow plots than in bare plots,which was 1485.3 and 464.0 individuals per 100 g dry soil in fallow and bare plots,respectively;the nugget(C_(0))/sill(C_(0)+C)ratio of total nematodes,plant-parasites and bacterivores were lower in fallow plots(27.3%-45.6%)than in bare plots(49.5%-100%);the spatial distribution of total nematodes and trophic groups was found to be different between fallow and bare plots,which indicated that vegetation coverage had an effect on soil nematodes.展开更多
Ambiguity exists concerning the effects of climate on soil nematode-community composition. In this study, we examined the free-living nematode communities in soil along a climatic gradient representing humid-Mediterra...Ambiguity exists concerning the effects of climate on soil nematode-community composition. In this study, we examined the free-living nematode communities in soil along a climatic gradient representing humid-Mediterranean, Mediterranean, semi-arid, and arid climate types. The relationships between abiotic soil characteristics (organic carbon, soil moisture (SM), water-holding capacity) and nematode parameters, such as abundance, trophic group composition, and diversity indices, were explored in the context of climate and seasonality. Nematode abundance was lowest at the arid site. At the humid Mediterranean and Mediterranean locations, nematode abundance reached its peak in winter, while at the semi-arid and arid sites, an almost opposite trend was observed, with lowest abundances in winter, presumably due to a nutrient washout from the soil profile during the rainy season. On the trophic level, one trophic group demonstrated a positive correlation with SM and one trophic group demonstrated a negative one at each location, while the other two groups remained constant. Fungi-feeding nematodes were found to be unaffected by SM at the humid-Mediterranean and Mediterranean locations, while at the semi-arid and arid sites their proportion increased in correlation with decreasing SM. Bacteria-feeders increased with SM at the arid site, were unaffected at the semi-arid location, and decreased with SM at the humid-Mediterranean and Mediterranean sites. Plant-parasites were associated with SM only at the humid-Mediterranean site. Omnivores-predators were positively affected by SM at the two middle locations, staying constant at the humid-Mediterranean and arid sites. These findings point to the strong linkage existing between nematode trophic behavior and climatic factors, demonstrating distinctive communal fingerprints for each climate type.展开更多
Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,for...Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,forest land and fallow land were investigated in six regions of northern China.Generic richness,diversity,abundance and biomass of soil nematodes was the lowest in crop land.The richness and diversity of soil nematodes were 28.8and 15.1%higher in fallow land than in crop land,respectively.No significant differences in soil nematode indices were found between forest land and fallow land,but their network keystone genera composition was different.Among the keystone genera,50%of forest land genera were omnivores-predators and 36%of fallow land genera were bacterivores.The proportion of fungivores in forest land was 20.8%lower than in fallow land.The network complexity and the stability were lower in crop land than forest land and fallow land.Soil pH,NH_(4)^(+)-N and NO_(3)^(–)-N were the major factors influencing the soil nematode community in crop land while soil organic carbon and moisture were the major factors in forest land.Soil nematode communities in crop land influenced by artificial management practices were more dependent on the soil environment than communities in forest land and fallow land.Land use induced soil environment variation and altered network relationships by influencing trophic group proportions among keystone nematode genera.展开更多
基金Project supported by the National Key Basic Research Support Foundation (NKBRSF) of China (No. G1999011804-04) the Foundation of Knowledge Innovation Program of IAE-CAS (No. SCXMS0105).
文摘Geostatistics combined with GIS was applied to assess the spatial distribution of nematode trophic groups following two contrasting soil uses in the black soil region of Northeast China. Two plots, one with fallow for 12 years and the other cultivated, were marked on regular square grids with 2-m spacing. Soil samples were collected from each sampling point, nematodes were extracted from these samples and classified into four trophic groups: bacterivores, fungivores, plant parasites, and omnivores/predators. The numbers of total nematodes and trophic groups analyzed had normal distributions on both fallow and cultivated plots. The absolute abundances of total nematodes and trophic groups were observed to be much more homogeneous on cultivated plot than on fallow one. Geostatistical analysis showed that the densities of total nematodes and trophic groups on both fallow and cultivated plots exhibited spatial dependence at the sampled scale and their experimental semivariograms were adjusted to a spherical or exponential model, except those of bacterivores and fungivores on cultivated plot. The spatial distribution of nematode trophic groups was found to be different for the two land uses, indicating that cultivation changed the native condition for soil nematode activities.
基金Supported by the National Natural Science Foundation of China (No. 30570337).
文摘A field investigation was conducted at the Shenyang Experimental Station of Ecology, Chinese Academy of Sciences, in an aquic brown soil of Northeast China under three land use types (cropland, abandoned cropland, and woodland) in order to evaluate whether the vertical distribution and seasonal fluctuation for the number of total nematodes and trophic groups could reflect soil ecosystem differences and to determine the relationships between soil chemical properties and soil nematodes. The majority of soil nematodes were present in the 0-20 cm soil layers, and for these land use types plant parasites were the most abundant trophic group. In the abandoned cropland the numbers of plant parasites reached a peak on the August sampling date, whereas the cropland and woodland peaked on the October sampling date. Meanwhile, in all land use types the number of total nematodes, bacterivores, plant parasites, and omnivores-predators was negatively (P < 0.05, except for bacterivores in cropland, which was not significant) correlated with bulk density, and positively (P < 0.05, except for fungivores in abandoned cropland, which was not significant) correlated with total organic carbon and total nitrogen.
文摘The spatial variability of total soil nematodes and trophic groups in bare and fallow plots in Shenyang Experi-mental Station of Ecology,ChineseAcademy of Sciences was examined using geostatistics combined with classic statistics.Results showed that the soil pH value had a negative effect on plant-parasites in both bare and fallow plots;the mean number of total nematodes was significantly higher in fallow plots than in bare plots,which was 1485.3 and 464.0 individuals per 100 g dry soil in fallow and bare plots,respectively;the nugget(C_(0))/sill(C_(0)+C)ratio of total nematodes,plant-parasites and bacterivores were lower in fallow plots(27.3%-45.6%)than in bare plots(49.5%-100%);the spatial distribution of total nematodes and trophic groups was found to be different between fallow and bare plots,which indicated that vegetation coverage had an effect on soil nematodes.
文摘Ambiguity exists concerning the effects of climate on soil nematode-community composition. In this study, we examined the free-living nematode communities in soil along a climatic gradient representing humid-Mediterranean, Mediterranean, semi-arid, and arid climate types. The relationships between abiotic soil characteristics (organic carbon, soil moisture (SM), water-holding capacity) and nematode parameters, such as abundance, trophic group composition, and diversity indices, were explored in the context of climate and seasonality. Nematode abundance was lowest at the arid site. At the humid Mediterranean and Mediterranean locations, nematode abundance reached its peak in winter, while at the semi-arid and arid sites, an almost opposite trend was observed, with lowest abundances in winter, presumably due to a nutrient washout from the soil profile during the rainy season. On the trophic level, one trophic group demonstrated a positive correlation with SM and one trophic group demonstrated a negative one at each location, while the other two groups remained constant. Fungi-feeding nematodes were found to be unaffected by SM at the humid-Mediterranean and Mediterranean locations, while at the semi-arid and arid sites their proportion increased in correlation with decreasing SM. Bacteria-feeders increased with SM at the arid site, were unaffected at the semi-arid location, and decreased with SM at the humid-Mediterranean and Mediterranean sites. Plant-parasites were associated with SM only at the humid-Mediterranean site. Omnivores-predators were positively affected by SM at the two middle locations, staying constant at the humid-Mediterranean and arid sites. These findings point to the strong linkage existing between nematode trophic behavior and climatic factors, demonstrating distinctive communal fingerprints for each climate type.
基金supported by the National Natural Science Foundation of China(U22A20501)the National Key Research and Development Plan of China(2022YFD1500601)+4 种基金the National Science and Technology Fundamental Resources Investigation Program of China(2018FY100304)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28090200)the Liaoning Province Applied Basic Research Plan Program,China(2022JH2/101300184)the Shenyang Science and Technology Plan Program,China(21-109-305)the Liaoning Outstanding Innovation Team,China(XLYC2008015)。
文摘Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,forest land and fallow land were investigated in six regions of northern China.Generic richness,diversity,abundance and biomass of soil nematodes was the lowest in crop land.The richness and diversity of soil nematodes were 28.8and 15.1%higher in fallow land than in crop land,respectively.No significant differences in soil nematode indices were found between forest land and fallow land,but their network keystone genera composition was different.Among the keystone genera,50%of forest land genera were omnivores-predators and 36%of fallow land genera were bacterivores.The proportion of fungivores in forest land was 20.8%lower than in fallow land.The network complexity and the stability were lower in crop land than forest land and fallow land.Soil pH,NH_(4)^(+)-N and NO_(3)^(–)-N were the major factors influencing the soil nematode community in crop land while soil organic carbon and moisture were the major factors in forest land.Soil nematode communities in crop land influenced by artificial management practices were more dependent on the soil environment than communities in forest land and fallow land.Land use induced soil environment variation and altered network relationships by influencing trophic group proportions among keystone nematode genera.