期刊文献+
共找到274篇文章
< 1 2 14 >
每页显示 20 50 100
A Physics-informed Deep-learning Intensity Prediction Scheme for Tropical Cyclones over the Western North Pacific 被引量:1
1
作者 Yitian ZHOU Ruifen ZHAN +4 位作者 Yuqing WANG Peiyan CHEN Zhemin TAN Zhipeng XIE Xiuwen NIE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1391-1402,共12页
Accurate prediction of tropical cyclone(TC)intensity is challenging due to the complex physical processes involved.Here,we introduce a new TC intensity prediction scheme for the western North Pacific(WNP)based on a ti... Accurate prediction of tropical cyclone(TC)intensity is challenging due to the complex physical processes involved.Here,we introduce a new TC intensity prediction scheme for the western North Pacific(WNP)based on a time-dependent theory of TC intensification,termed the energetically based dynamical system(EBDS)model,together with the use of a long short-term memory(LSTM)neural network.In time-dependent theory,TC intensity change is controlled by both the internal dynamics of the TC system and various environmental factors,expressed as environmental dynamical efficiency.The LSTM neural network is used to predict the environmental dynamical efficiency in the EBDS model trained using besttrack TC data and global reanalysis data during 1982–2017.The transfer learning and ensemble methods are used to retrain the scheme using the environmental factors predicted by the Global Forecast System(GFS)of the National Centers for Environmental Prediction during 2017–21.The predicted environmental dynamical efficiency is finally iterated into the EBDS equations to predict TC intensity.The new scheme is evaluated for TC intensity prediction using both reanalysis data and the GFS prediction data.The intensity prediction by the new scheme shows better skill than the official prediction from the China Meteorological Administration(CMA)and those by other state-of-art statistical and dynamical forecast systems,except for the 72-h forecast.Particularly at the longer lead times of 96 h and 120 h,the new scheme has smaller forecast errors,with a more than 30%improvement over the official forecasts. 展开更多
关键词 tropical cyclones western North pacific intensity prediction EBDS LSTM
下载PDF
Environmental Conditions Conducive to the Formation of Multiple Tropical Cyclones over the Western North Pacific
2
作者 Yining GU Ruifen ZHAN Xiaomeng LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第10期2027-2042,共16页
There is limited understanding regarding the formation of multiple tropical cyclones(MTCs).This study explores the environmental conditions conducive to MTC formation by objectively determining the atmospheric circula... There is limited understanding regarding the formation of multiple tropical cyclones(MTCs).This study explores the environmental conditions conducive to MTC formation by objectively determining the atmospheric circulation patterns favorable for MTC formation over the western North Pacific.Based on 199 MTC events occurring from June to October 1980–2020,four distinct circulation patterns are identified:the monsoon trough(MT)pattern,accounting for 40.3%of occurrences,the confluence zone(CON)pattern at 26.2%,the easterly wave(EW)pattern at 17.8%,and the monsoon gyre(MG)pattern at 15.7%.The MT pattern mainly arises from the interaction between the subtropical high and the monsoon trough,with MTCs forming along the monsoon trough and its flanks.The CON pattern is affected by the subtropical high,the South Asian high,and the monsoon trough,with MTCs emerging at the confluence zone where the prevailing southwesterly and southeasterly flows converge.The EW pattern is dominated by easterly flows,with MTCs developing along the easterly wave train.MTCs in the MG pattern arise within a monsoon vortex characterized by strong southwesterly flows.A quantitative analysis further indicates that MTC formation in the MT pattern is primarily governed by mid-level vertical velocity and low-level vorticity,while mid-level humidity and vertical velocity are significantly important in the other patterns.The meridional shear and convergence of zonal winds are essential in converting barotropic energy from the basic flows to disturbance kinetic energy,acting as the primary source for eddy kinetic energy growth. 展开更多
关键词 multiple tropical cyclones western North pacific circulation pattern monsoon trough barotropic energy conversion
下载PDF
Structure Analyses of the Explosive Extratropical Cyclone:A Case Study over the Northwestern Pacific in March 2007 被引量:2
3
作者 WANG Shuai FU Gang PANG Huaji 《Journal of Ocean University of China》 SCIE CAS CSCD 2017年第6期933-944,共12页
The synoptic situation and mesoscale structure of an explosive extratropical cyclone over the Northwestern Pacific in March 2007 are investigated through weather station observations and data reanalysis. The cyclone i... The synoptic situation and mesoscale structure of an explosive extratropical cyclone over the Northwestern Pacific in March 2007 are investigated through weather station observations and data reanalysis. The cyclone is located beneath the poleward side of the exit of a 200 hPa jet, which is a strong divergent region aloft. At mid-level, the cyclone lies on the downstream side of a well-developed trough, where a strong ascending motion frequently occurs. Cross-section analyses with weather station data show that the cyclone has a warm and moist core. A ‘nose' of the cold front, which is characterized by a low-level protruding structure in the equivalent potential temperature field, forms when the cyclone moves offshore. This ‘nose' structure is hypothesized to have been caused by the heating effect of the Kuroshio Current. Two low-level jet streams are also identified on the western and eastern sides of the cold front. The western jet conveys cold and dry air at 800–900 hPa. The wind in the northern part is northeasterly, and the wind in the southern part is northwesterly. By contrast, the eastern jet carries warm and moist air into the cyclone system, ascending northward from 900 hPa to 600–700 hPa. The southern part is dominated by the southerly wind, and the wind in the northern part is southwesterly. The eastern and western jets significantly increase the air temperature and moisture contrast in the vicinity of the cold front. This increase could play an important role in improving the rapid cyclogenesis process. 展开更多
关键词 EXPLOSIVE extratropical cyclone meteorological BOMB rapid CYCLOGENESIS MESOSCALE STRUCTURE northwestern pacific
下载PDF
Modulation of Tropical Cyclone Activity Over the Northwestern Pacific Through the Quasi-Biweekly Oscillation 被引量:2
4
作者 ZHU Li-juan LIN Fei-long LIANG Chu-jin 《Journal of Tropical Meteorology》 SCIE 2021年第2期125-135,共11页
The quasi-biweekly oscillation(QBWO)is the second most dominant intraseasonal mode for circulation over the Northwestern Pacific(WNP)during boreal summer.In this study,we investigated how the QBWO modulates tropical c... The quasi-biweekly oscillation(QBWO)is the second most dominant intraseasonal mode for circulation over the Northwestern Pacific(WNP)during boreal summer.In this study,we investigated how the QBWO modulates tropical cyclone(TC)activities over the WNP from dynamic and thermodynamic perspectives.The propagation of the QBWO can be divided into four phases through empirical orthogonal function analysis of the vorticity at 850 hPa,which was proven to be effective in extracting the QBWO signal.TC generation and landings are significantly enhanced during the active period(phases 1 and 2)relative to the inactive period(phases 3 and 4).Composite analyses show the QBWO could significantly modulate TC activity as it propagates northwestward by changing the atmospheric circulation at both high and low levels.Cumulus convection provides an important link between TCs and the QBWO.The major component of the atmosphere heat source is found to be the latent heat release of convection.The condensation latent heat centers,vertical circulation,and water vapor flux divergence cooperate well during different phases of the QBWO.The vertical profile of the condensation latent heat indicates upper-level heating(cooling)during the active(inactive)phases of the QBWO.Thus,the northwestward propagation of the QBWO can modulate TC activity by affecting the configuration of atmospheric heating over the WNP. 展开更多
关键词 quasi-biweekly oscillation northwestern pacific tropical cyclone atmospheric circulation convective condensation heating
下载PDF
Track-Pattern-Based Characteristics of Extratropical Transitioning Tropical Cyclones in the Western North Pacific
5
作者 Hong HUANG Dan WU +2 位作者 Yuan WANG Zhen WANG Yu LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1251-1263,共13页
Based on the Regional Specialized Meteorological Center(RSMC)Tokyo-Typhoon Center best-track data and the NCEP-NCAR reanalysis dataset,extratropical transitioning(ET)tropical cyclones(ETCs)over the western North Pacif... Based on the Regional Specialized Meteorological Center(RSMC)Tokyo-Typhoon Center best-track data and the NCEP-NCAR reanalysis dataset,extratropical transitioning(ET)tropical cyclones(ETCs)over the western North Pacific(WNP)during 1951–2021 are classified into six clusters using the fuzzy c-means clustering method(FCM)according to their track patterns.The characteristics of the six hard-clustered ETCs with the highest membership coefficient are shown.Most tropical cyclones(TCs)that were assigned to clusters C2,C5,and C6 made landfall over eastern Asian countries,which severely threatened these regions.Among landfalling TCs,93.2%completed their ET after landfall,whereas 39.8%of ETCs completed their transition within one day.The frequency of ETCs over the WNP has decreased in the past four decades,wherein cluster C5 demonstrated a significant decrease on both interannual and interdecadal timescales with the expansion and intensification of the western Pacific subtropical high(WPSH).This large-scale circulation pattern is favorable for C2 and causes it to become the dominant track pattern,owning to it containing the largest number of intensifying ETCs among the six clusters,a number that has increased insignificantly over the past four decades.The surface roughness variation and three-dimensional background circulation led to C5 containing the maximum number of landfalling TCs and a minimum number of intensifying ETCs.Our results will facilitate a better understanding of the spatiotemporal distributions of ET events and associated environment background fields,which will benefit the effective monitoring of these events over the WNP. 展开更多
关键词 Western North pacific tropical cyclone extratropical transition fuzzy c-means clustering method
下载PDF
The upper ocean response to tropical cyclones in the northwestern Pacific analyzed with Argo data 被引量:15
6
作者 刘增宏 许建平 +2 位作者 朱伯康 孙朝辉 张立峰 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2007年第2期123-131,共9页
A large number of autonomous profiling floats deployed in global oceans have provided abundant temperature and salinity profiles of the upper ocean. Many floats occasionally profile observations during the passage of ... A large number of autonomous profiling floats deployed in global oceans have provided abundant temperature and salinity profiles of the upper ocean. Many floats occasionally profile observations during the passage of tropical cyclones. These in-situ observations are valuable and useful in studying the ocean’s response to tropical cyclones, which are rarely observed due to harsh weather conditions. In this paper, the upper ocean response to the tropical cyclones in the northwestern Pacific during 2000–2005 is analyzed and discussed based on the data from Argo profiling floats. Results suggest that the passage of tropical cyclones caused the deepening of mixed layer depth (MLD), cooling of mixed layer temperature (MLT), and freshening of mixed layer salinity (MLS). The change in MLT is negatively correlated to wind speed. The cooling of the MLT extended for 50–150 km on the right side of the cyclone track. The change of MLS is almost symmetrical in distribution on both sides of the track, and the change of MLD is negatively correlated to pre-cyclone initial MLD. 展开更多
关键词 upper ocean tropical cyclone mixed layer Argo data northwestern pacific
下载PDF
The characteristic differences of tropical cyclones forming over the western North Pacific and the South China Sea 被引量:17
7
作者 YUAN Jinnan WANG Dongxiao +2 位作者 LIU Chunxia HUANG Jian HUANG Huijun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2007年第4期29-43,共15页
The best track dataset of tropical cyclones in the western North Pacific (WNP) and the South China Sea (SCS) from 1977 to 2005 during the satellite era, the NCEP/NCAR reanalysis dataset and the extended reconstruc... The best track dataset of tropical cyclones in the western North Pacific (WNP) and the South China Sea (SCS) from 1977 to 2005 during the satellite era, the NCEP/NCAR reanalysis dataset and the extended reconstructed sea surface temperature dataset are employed in this study. The main climatological characteristics of tropical cyclone formation over the WNP and the SCS are compared. It is found that there is obviously different for the locations of tropical cyclone origins, achieving the lowest central pressure and termination points between over the WNP and over the SCS. The annual number of tropical cyclones forming over the SCS is obviously less than over the WNP, and there is a significant negative correlation with the correlation coefficient being - 0.36 at the 5% significance level between over the WNP and over the SCS. The mean speed of tropical cyclone moving is 6.5 m/s over the WNP and 4.6 m/s over the SCS. The mean lowest central pressure of tropical cyclones is obviously weaker over the SCS than over the WNP. The tropical cyclone days per year, mean total distance and total displacement of tropical cyclone traveled over the WNP are all obviously longer than those over the SCS. Tropical cyclone may intensify to Saffir - Simpson hurricane scale 5 over the WNP, but no tropical cyclone can intensify to Saffir - Simpson hurricane scale 3 over the SCS. The changing ranges of the radii (R15,R16) of the 15.4 m/s winds them and the 25.7 m/s winds over the WNP are obviously wider than those over the SCS, and the median values of the radii over the WNP are also larger than those over the SCS. For the same intensity of tropical cyclones, both radii have larger medians over the WNP than over the SCS. The correlations of annual mean tropical cyclone size parameters between over the WNP and over the SCS are not significant. At the same time, the asymmetric radii of tropical cyclones over the WNP are different from those over the SCS. 展开更多
关键词 characteristic differences tropical cyclone western North pacific and South China Sea
下载PDF
Changes in the Tropical Cyclone Genesis Potential Index over the Western North Pacific in the SRES A2 Scenario 被引量:7
8
作者 张颖 王会军 +1 位作者 孙建奇 Helge DRANGE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第6期1246-1258,共13页
The Tropical Cyclone Genesis Potential Index (GPI) was employed to investigate possible impacts of global warming on tropical cyclone genesis over the western North Pacific (WNP). The outputs of 20th century clima... The Tropical Cyclone Genesis Potential Index (GPI) was employed to investigate possible impacts of global warming on tropical cyclone genesis over the western North Pacific (WNP). The outputs of 20th century climate simulation by eighteen GCMs were used to evaluate the models' ability to reproduce tropical cyclone genesis via the GPI. The GCMs were found in general to reasonably reproduce the observed spatial distribution of genesis. Some of the models also showed ability in capturing observed temporal variation. Based on the evaluation, the models (CGCM3.1-T47 and IPSL-CM4) found to perform best when reproducing both spatial and temporal features were chosen to project future GPI. Results show that both of these models project an upward trend of the GPI under the SRES A2 scenario, however the rate of increase differs between them. 展开更多
关键词 Genesis Potential Index tropical cyclone western North pacific global warming SRES A2
下载PDF
On the Weakened Relationship between Spring Arctic Oscillation and Following Summer Tropical Cyclone Frequency over the Western North Pacific:A Comparison between 1968–1986 and 1989–2007 被引量:7
9
作者 CAO Xi CHEN Shangfeng +2 位作者 CHEN Guanghua CHEN Wen WU Renguang 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第10期1319-1328,共10页
This study documents a weakening of the relationship between the spring Arctic Oscillation (AO) and the following summer tropical cyclone (TC) formation frequency over the eastern part (150°-180°E) of ... This study documents a weakening of the relationship between the spring Arctic Oscillation (AO) and the following summer tropical cyclone (TC) formation frequency over the eastern part (150°-180°E) of the western North Pacific (WNP). The relationship is strong and statistically significant during 1968-1986, but becomes weak during 1989-2007. The spring AO- related SST, atmospheric dynamic, and thermodynamic conditions are compared between the two epochs to understand the possible reasons for the change in the relationship. Results indicate that the spring AO leads to an E1 Nifio-like SST anomaly, lower-level anomalous cyclonic circulation, upper-level anomalous anticyclonic circulation, enhanced ascending motion, and a positive midlevel relative humidity anomaly in the tropical western-central Pacific during 1968-1986, whereas the AOrelated anomalies in the above quantities are weak during 1989-2007. Hence, the large-scale dynamic and thermodynamic anomalies are more favorable for TC formation over the eastern WNP during 1968-1986 than during 1989-2007. 展开更多
关键词 spring Arctic Oscillation summer tropical cyclone western North pacific SST
下载PDF
Decadal Variations of Intense Tropical Cyclones over the Western North Pacific during 1948–2010 被引量:5
10
作者 ZHAO Haikun WU Liguang WANG Ruifang 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第1期57-65,共9页
Using Joint Warning Typhoon Center (JTWC) best track data during the period 1948-2010, decadal and interdecadal changes of annual category 4 and 5 tropical cyclone (TC) frequency in the western North Pacific basin... Using Joint Warning Typhoon Center (JTWC) best track data during the period 1948-2010, decadal and interdecadal changes of annual category 4 and 5 tropical cyclone (TC) frequency in the western North Pacific basin were examined. By allowing all of the observed TCs in the JTWC dataset to move along the observed TC tracks in a TC intensity model, the annual category 4 and 5 TC frequency was simulated. The results agreed well with observations when the TC intensity prior to 1973 was adjusted based on time-dependent biases due to changes in measurement and reporting practices. The simulated and adjusted time series showed significant decadal (12-18 years) variability, while the interdecadal (18-32 years) variability was found to be statistically insignificant. Numerical simulations indicated that changes in TC tracks are the most important factor for the decadal variability in the category 4 and 5 TC frequency in the western North Pacific basin, while a combined effect of changes in SST and vertical wind shear also contributes to the decadal variability. Further analysis suggested that the active phase of category 4 and 5 TCs is closely associated with an eastward shift in the TC formation locations, which allows more TCs to follow a longer journey, favoring the development of category 4 and 5 TCs. The active phase corresponds with the SST warming over the tropical central and eastern Pacific and the eastward extension of the monsoon trough, thus leading to the eastward shift in TC formation locations. 展开更多
关键词 decadal variations intense tropical cyclones numerical simulation western North pacific
下载PDF
Projection of the Future Changes in Tropical Cyclone Activity Affecting East Asia over the Western North Pacific Based on Multi-RegCM4 Simulations 被引量:10
11
作者 Jie WU Xuejie GAO +2 位作者 Yingmo ZHU Ying SHI Filippo GIORGI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第2期284-303,共20页
Future changes in tropical cyclone(TC)activity over the western North Pacific(WNP)under the representative concentration pathway RCP4.5 are investigated based on a set of 21 st century climate change simulations over ... Future changes in tropical cyclone(TC)activity over the western North Pacific(WNP)under the representative concentration pathway RCP4.5 are investigated based on a set of 21 st century climate change simulations over East Asia with the regional climate model RegCM4 driven by five global models.The RegCM4 reproduces the major features of the observed TC activity over the region in the present-day period of 1986-2005,although with the underestimation of the number of TC genesis and intensity.A low number of TCs making landfall over China is also simulated.By the end of the 21st century(2079-98),the annual mean frequency of TC genesis and occurrence is projected to increase over the WNP by16%and 10%,respectively.The increase in frequency of TC occurrence is in good agreement among the simulations,with the largest increase over the ocean surrounding Taiwan Island and to the south of Japan.The TCs tend to be stronger in the future compared to the present-day period of 1986-2005,with a large increase in the frequency of strong TCs.In addition,more TCs landings are projected over most of the China coast,with an increase of~18%over the whole Chinese territory. 展开更多
关键词 regional climate model RegCM4 tropical cyclone western North pacific
下载PDF
Influence of ENSO Events on Tropical Cyclone Activity over the Western North Pacific 被引量:2
12
作者 LIU Zenghong CHEN Xingrong +3 位作者 SUN Chaohui CAO Minjie WU Xiaofen LU Shaolei 《Journal of Ocean University of China》 SCIE CAS CSCD 2019年第4期784-794,共11页
Based on an analysis of 51-year (1965 2015) data, the influence of El Ni o Southern Oscillation (ENSO) events on tropical cyclone (TC) activity is examined over the western North Pacific (WNP). The total number of TCs... Based on an analysis of 51-year (1965 2015) data, the influence of El Ni o Southern Oscillation (ENSO) events on tropical cyclone (TC) activity is examined over the western North Pacific (WNP). The total number of TCs formed in the entire WNP reduces by about 3.4 TCs per year in La Ni a years, whereas TCs have an equivalent genesis number between El Ni o years and climatology. During El Ni o years, the frequency of TC formation increases remarkably in the southeast quadrant (140 E 180 , 0 17 N) and decreases in the northwest quadrant (120 140 E, 17 30 N). During La Ni a years, TCs tend to form in the northwest and southwest quadrants (120 140 E, 0 17 N) quadrants. TCs tend to become long-lived in the peak season (from July to Septem- ber) of El Ni o years and during strong El Ni o events. TC genesis shows a southeastward positive shift in terms of lifetime and intensity during El Ni o years, thus more super TCs (winds ≥ 58.64 m s 1) are formed in the southeast quadrant. Further analysis using the genesis potential index (GPI) indicates that the interannual variations in the TC genesis and track are significantly influenced by a combination of large-scale dynamic and thermodynamic conditions. 展开更多
关键词 ENSO tropical cyclone WESTERN NORTH pacific
下载PDF
THE RELATIONSHIPS BETWEEN TROPICAL CYCLONE TRACKS AND LOCAL SST OVER THE WESTERN NORTH PACIFIC 被引量:4
13
作者 袁俊鹏 江静 《Journal of Tropical Meteorology》 SCIE 2011年第2期120-127,共8页
Tropical Cyclone (TC) tracks over the western North Pacific (WNP) during 1949–2007, obtained from China Meteorological Administration/Shanghai Typhoon institute, are classified into three track types. These types are... Tropical Cyclone (TC) tracks over the western North Pacific (WNP) during 1949–2007, obtained from China Meteorological Administration/Shanghai Typhoon institute, are classified into three track types. These types are the main pathways by which TCs influence the coast of East Asia. The relationships between local sea surface temperature (SST) in WNP and TC tracks are revealed. Results show that the local SST plays an important role in TC tracks, though the relationships between local SST and the frequencies of different TC tracks are very dissimilar. The local SST has significant positive correlation with northwest-path TCs, and negative correlation with recurving-path TCs. However, the west-path TCs do not have statistically significant relationship with the local SST. The upper sea temperature anomalies which influence TC tracks last about six months before TC occurrence. Further analysis indicates that the ocean conditions influence TC tracks by modifying the atmospheric circulation, and then the modified atmospheric circulation can affect TC’s genesis location and motion. 展开更多
关键词 tropical cyclone track western North pacific SST
下载PDF
Impact of the Western Pacific Tropical Easterly Jet on Tropical Cyclone Genesis Frequency over the Western North Pacific 被引量:2
14
作者 Ruifen ZHAN Yuqing WANG Yihui DING 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第2期235-248,共14页
Although it is well known that the tropical easterly jet(TEJ)has a significant impact on summer weather and climate over India and Africa,whether the TEJ exerts an important impact on tropical cyclone(TC)activity over... Although it is well known that the tropical easterly jet(TEJ)has a significant impact on summer weather and climate over India and Africa,whether the TEJ exerts an important impact on tropical cyclone(TC)activity over the western North Pacific(WNP)remains unknown.In this study,we examined the impact of the TEJ on the interannual variability of TC genesis frequency over the WNP in the TC season(June-September)during 1980-2020.The results show a significant positive correlation between TC genesis frequency over the WNP and the jet intensity in the entrance region of the TEJ over the tropical western Pacific(in brief WP_TEJ),with a correlation coefficient as high as 0.66.The intensified WP_TEJ results in strong ageostrophic northerly winds in the entrance region and thus upper-level divergence to the north of the jet axis over the main TC genesis region in the WNP.This would lead to an increase in upward motion in the troposphere with enhanced low-level convergence,which are the most important factors to the increases in low-level vorticity,mid-level humidity and low-level eddy kinetic energy,and the decreases in sea level pressure and vertical wind shear in the region.All these changes are favorable for TC genesis over the WNP and vice versa.Further analyses indicate that the interannual variability of the WP_TEJ intensity is likely to be linked to the local diabatic heating over the Indian Ocean-western Pacific and the central Pacific El Ni?o-Southern Oscillation. 展开更多
关键词 tropical cyclones genesis frequency tropical easterly jet western North pacific
下载PDF
Tropical Cyclone Genesis Potential Index over the Western North Pacific Simulated by CMIP5 Models 被引量:1
15
作者 SONG Yajuan WANG Lei +1 位作者 LEI Xiaoyan WANG Xidong 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第11期1539-1550,共12页
Tropical cyclone (TC) genesis over the western North Pacific (WNP) is analyzed using 23 CMIP5 (Coupled Model Intercomparison Project Phase 5) models and reanalysis datasets. The models are evaluated according to... Tropical cyclone (TC) genesis over the western North Pacific (WNP) is analyzed using 23 CMIP5 (Coupled Model Intercomparison Project Phase 5) models and reanalysis datasets. The models are evaluated according to TC genesis potential index (GPI). The spatial and temporal variations of the GPI are first calculated using three atmospheric reanalysis datasets (ERA-Interim, NCEP/NCAR Reanalysis- 1, and NCEP/DOE Reanalysis-2). Spatial distributions of July-October-mean TC frequency based on the GPI from ERA-interim are more consistent with observed ones derived from IBTrACS global TC data. So, the ERA-interim reanalysis dataset is used to examine the CMIP5 models in terms of reproducing GPI during the period 1982-2005. Although most models possess deficiencies in reproducing the spatial distribution of the GPI, their multi- model ensemble (MME) mean shows a reasonable climatological GPI pattern characterized by a high GPI zone along 20°N in the WNP. There was an upward trend of TC genesis frequency during 1982 to 1998, followed by a downward trend. Both MME results and reanalysis data can represent a robust increasing trend during 1982-1998, but the models cannot simulate the downward trend after 2000. Analysis based on future projection experiments shows that the GPI exhibits no significant change in the first half of the 21st century, and then starts to decrease at the end of the 21st century under the representative concentration pathway (RCP) 2.6 scenario. Under the RCP8.5 scenario, the GPI shows an increasing trend in the vicinity of 20°N, indicating more TCs could possibly be expected over the WNP under future global warming. 展开更多
关键词 tropical cyclone genesis potential index CMIP5 western North pacific global warming.
下载PDF
Revealing the Effects of the El Nio-Southern Oscillation on Tropical Cyclone Intensity over the Western North Pacific from a Model Sensitivity Study 被引量:1
16
作者 周洋 江静 +1 位作者 鹿有余 黄安宁 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第4期1117-1128,共12页
Five sets of model sensitivity experiments are conducted to investigate the influence of tropical cyclone (TC) genesis location and atmospheric circulation on interannual variability of TC intensity in the western N... Five sets of model sensitivity experiments are conducted to investigate the influence of tropical cyclone (TC) genesis location and atmospheric circulation on interannual variability of TC intensity in the western North Pacific (WNP). In each experiment, bogus TCs are placed at different initial locations, and simulations are conducted with identical initial and boundary conditions. In the first three experiments, the specified atmospheric and SST conditions represent the mean conditions of E1 Nifio, La Nifia, and neutral years. The other two experiments are conducted with the specified atmospheric conditions of E1 Nifio and La Nifia years but with SSTs exchanged. The model results suggest that TCs generated in the southeastern WNP incurred more favorable environmental conditions for development than TCs generated elsewhere. The different TC intensities between E1 Nifio and La Nifia years are caused by difference in TC genesis location and low-level vorticity (VOR). VOR plays a significant role in the intensities of TCs with the same genesis locations between E1 Nifio and La Nina years. 展开更多
关键词 tropical cyclone intensity western North pacific ENSO MM5 low level vorticity
下载PDF
Technical Note on a Track-pattern-based Model for Predicting Seasonal Tropical Cyclone Activity over the Western North Pacific 被引量:1
17
作者 Chang-Hoi HO Joo-Hong KIM +5 位作者 Hyeong-Seog KIM Woosuk CHOI Min-Hee LEE Hee-Dong YOO Tae-Ryong KIM Sangwook PARK 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第5期1260-1274,共15页
Recently, the National Typhoon Center (NTC) at the Korea Meteorological Administration launched a track-pattern-based model that predicts the horizontal distribution of tropical cyclone (TC) track density from Jun... Recently, the National Typhoon Center (NTC) at the Korea Meteorological Administration launched a track-pattern-based model that predicts the horizontal distribution of tropical cyclone (TC) track density from June to October. This model is the first approach to target seasonal TC track clusters covering the entire western North Pacific (WNP) basin, and may represent a milestone for seasonal TC forecasting, using a simple statistical method that can be applied at weather operation centers. In this note, we describe the procedure of the track-pattern-based model with brief technical background to provide practical information on the use and operation of the model. The model comprises three major steps. First, long-term data of WNP TC tracks reveal seven climatological track clusters. Second, the TC counts for each cluster are predicted using a hybrid statistical-dynamical method, using the seasonal prediction of large-scale environments. Third, the final forecast map of track density is constructed by merging the spatial probabilities of the seven clusters and applying necessary bias corrections. Although the model is developed to issue the seasonal forecast in mid-May, it can be applied to alternative dates and target seasons following the procedure described in this note. Work continues on establishing an automatic system for this model at the NTC. 展开更多
关键词 tropical cyclone western North pacific seasonal forecast track-pattern-based model hybrid statistical-dynamical approach
下载PDF
Influence of climatic warming in the Southern and Northern Hemi-sphere on the tropical cyclone over the western North Pacific Ocean 被引量:2
18
作者 TIAN Rong-xiang WENG Huan-xin 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第11期1923-1927,共5页
Based on analyzing the surface air temperature series in the Southern and Northern Hemisphere and the tropical cyclone (TC) over the western North Pacific Ocean, the relationships between climatic warming and the freq... Based on analyzing the surface air temperature series in the Southern and Northern Hemisphere and the tropical cyclone (TC) over the western North Pacific Ocean, the relationships between climatic warming and the frequency and intensity of tropical cyclone are investigated. The results showed that with the climatic warming in both hemispheres, the frequency of the tropical cyclone over the western North Pacific Ocean reduces and its intensity weakens simultaneously. A possible explanation might be that the cold air invasion from the Southern Hemisphere weakens due to global warming. 展开更多
关键词 Climatic warming Southern and Northern Hemisphere Western North pacific Ocean tropical cyclone (TC)
下载PDF
Unstable relationship between spring NAO and summer tropical cyclone genesis frequency over the western North Pacific 被引量:2
19
作者 Qun Zhou Wen Chen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第5期65-76,共12页
The present study reveals the fact that the relationship between the spring(April–May)North Atlantic Oscillation(NAO)and the following summer(June–September)tropical cyclone(TC)genesis frequency over the western Nor... The present study reveals the fact that the relationship between the spring(April–May)North Atlantic Oscillation(NAO)and the following summer(June–September)tropical cyclone(TC)genesis frequency over the western North Pacific(WNP)during the period of 1950–2018 was not stationary.It is shown that the relationship between the two has experienced a pronounced interdecadal shift,being weak and insignificant before yet strong and statistically significant after the early 1980 s.Next we compare the spring NAO associated dynamic and thermodynamic conditions,sea surface temperature(SST)anomalies,and atmospheric circulation processes between the two subperiods of 1954–1976 and 1996–2018,so as to illucidate the possible mechanism for this interdecadal variation in the NAO-TC connection.During the latter epoch,when the spring NAO was positive,enhanced low-level vorticity,reduced vertical zonal wind shear,intensified vertical velocity and increased middle-level relative humidity were present over the WNP in the summer,which is conducive to the genesis of WNP TCs.When the spring NAO is negative,the dynamic and thermodynamic factors are disadvantageous for the summertime TC formation and development over the WNP.The results of further analysis indicate that the persistence of North Atlantic tri-pole SST anomalies from spring to the subsequent summer induced by the spring NAO plays a fundamental role in the linkage between the spring NAO and summer atmospheric circulation.During the period of 1996–2018,a remarkable eastward propagating wave-train occurred across the northern Eurasian continent,forced by the anomalous SST tri-pole in the North Atlantic.The East Asian jet flow became greatly intensified,and the deep convection in the tropics was further enhanced via the changes of the local Hadley circulation,corresponding to a positive spring NAO.During the former epoch,the spring NAO-induced tri-pole SST anomalies in the North Atlantic were non-existent,and the related atmospheric circulation anomalies were extremely weak,thereby leading to the linkage between spring NAO and WNP TC genesis frequency in the following summer being insignificant. 展开更多
关键词 spring North Atlantic Oscillation summer tropical cyclone western North pacific
下载PDF
Variations in High-frequency Oscillations of Tropical Cyclones over the Western North Pacific 被引量:1
20
作者 Shumin CHEN Weibiao LI +5 位作者 Zhiping WEN Mingsen ZHOU Youyu LU Yu-Kun QIAN Haoya LIU Rong FANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第4期423-434,共12页
Variations in the high-frequency oscillations of tropical cyclones (TCs) over the western North Pacific (WNP) are studied in numerical model simulations. Power spectrum analysis of maximum wind speeds at 10 m (MW... Variations in the high-frequency oscillations of tropical cyclones (TCs) over the western North Pacific (WNP) are studied in numerical model simulations. Power spectrum analysis of maximum wind speeds at 10 m (MWS10) from an ensemble of 15 simulated TCs shows that oscillations are significant for all TCs. The magnitudes of oscillations in MWS10 are similar in the WNP and South China Sea (SCS); however, the mean of the averaged significant periods in the SCS (1.93 h) is shorter than that in the open water of the WNP (2.83 h). The shorter period in the SCS is examined through an ensemble of simulations, and a case simulation as well as a sensitivity experiment in which the continent is replaced by ocean for Typhoon Hagupit (2008). The analysis of the convergence efficiency within the boundary layer suggests that the shorter periods in the SCS are possibly due to the stronger terrain effect, which intensifies convergence through greater friction. The enhanced convergence strengthens the disturbance of the gradient and thermal wind balances, and then contributes to the shorter oscillation periods in the SCS. 展开更多
关键词 tropical cyclone high-frequency oscillation western North pacific South China Sea
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部