Let G be a finite group and |G| = pn, p be a prime. For 0 m n, sm(G) denotes the number of subgroups of of order pm of G. Loo-Keng Hua and Hsio-Fu Tuan have ever conjectured: for an arbitrary finite p-group G, if p &g...Let G be a finite group and |G| = pn, p be a prime. For 0 m n, sm(G) denotes the number of subgroups of of order pm of G. Loo-Keng Hua and Hsio-Fu Tuan have ever conjectured: for an arbitrary finite p-group G, if p > 2, then sm(G) ≡ 1, 1 + p, 1 + p + p2 or 1 + p + 2p2 (mod p3). In this paper, we investigate the conjecture, and give some p-groups in which the conjecture holds and some examples in which the conjecture does not hold.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 10671114)the Natural Science Foundation of Shanxi Province (Grant No. 2008012001)the Returned Abroad-Student Fund of Shanxi Province (Grant No. [2007]13-56)
文摘Let G be a finite group and |G| = pn, p be a prime. For 0 m n, sm(G) denotes the number of subgroups of of order pm of G. Loo-Keng Hua and Hsio-Fu Tuan have ever conjectured: for an arbitrary finite p-group G, if p > 2, then sm(G) ≡ 1, 1 + p, 1 + p + p2 or 1 + p + 2p2 (mod p3). In this paper, we investigate the conjecture, and give some p-groups in which the conjecture holds and some examples in which the conjecture does not hold.