Due to the biological risks of using the conventional lubricants,the vegetable oils have been considered nowadays.Besides,to improve the tribological properties of the vegetable oils in various applications like metal...Due to the biological risks of using the conventional lubricants,the vegetable oils have been considered nowadays.Besides,to improve the tribological properties of the vegetable oils in various applications like metal forming processes,nanoparticles have been used as additives.This research evaluated the lubrication performance of the Al2O3 and TiO2 nanoparticles dispersed in rapeseed oil during the parallel tubular channel angular pressing (PTCAP) process.The experimental PTCAP tests have been fulfilled under three lubrication conditions and the comparison between the PTCAP processed tubes has been performed in terms of the maximum forming force,surface roughness,and microhardness.The experimental results indicate that adding the mentioned nanoparticles has caused at least a 50% reduction in the maximum deformation load.Moreover,a remarkable decrement in the surface roughness of the formed tubes has been obtained.展开更多
Ultra-fine grained (UFG) cylindrical tubes were produced via recently developed tubular channel angular pressing (TCAP) process through different passes from as-cast AZ91 magnesium alloy. The microstructure and me...Ultra-fine grained (UFG) cylindrical tubes were produced via recently developed tubular channel angular pressing (TCAP) process through different passes from as-cast AZ91 magnesium alloy. The microstructure and mechanical properties of processed tube through one to four passes of TCAP process at 200℃ were investigated. Microhardness of the processed tube was increased to 98.5 HV after one pass from an initial value of 67 Hr. An increase in the number of passes from one to higher number of passes has no more effect on the microhardness. Yield and ultimate strengths were increased by 4.3 and 1.4 times compared to those in as-cast condition. Notable increase in the strength was achieved after one pass of TCAP while higher number of passes has no more effect. Microstructural investigation shows notable decrease in the grain size to around 500 nm from the primary value of - 150 μm. Dissolution and distribution of hard MglTAI12 phase in the grain boundaries of dynamically recrystallized UFG AZ91 with a mean grain size of - 500 nm was an interesting issue of TCAP processing at 200 ℃ compared to other severe plastic deformation processes.展开更多
文摘Due to the biological risks of using the conventional lubricants,the vegetable oils have been considered nowadays.Besides,to improve the tribological properties of the vegetable oils in various applications like metal forming processes,nanoparticles have been used as additives.This research evaluated the lubrication performance of the Al2O3 and TiO2 nanoparticles dispersed in rapeseed oil during the parallel tubular channel angular pressing (PTCAP) process.The experimental PTCAP tests have been fulfilled under three lubrication conditions and the comparison between the PTCAP processed tubes has been performed in terms of the maximum forming force,surface roughness,and microhardness.The experimental results indicate that adding the mentioned nanoparticles has caused at least a 50% reduction in the maximum deformation load.Moreover,a remarkable decrement in the surface roughness of the formed tubes has been obtained.
基金financially supported by Iran National Science Foundation(INSF)
文摘Ultra-fine grained (UFG) cylindrical tubes were produced via recently developed tubular channel angular pressing (TCAP) process through different passes from as-cast AZ91 magnesium alloy. The microstructure and mechanical properties of processed tube through one to four passes of TCAP process at 200℃ were investigated. Microhardness of the processed tube was increased to 98.5 HV after one pass from an initial value of 67 Hr. An increase in the number of passes from one to higher number of passes has no more effect on the microhardness. Yield and ultimate strengths were increased by 4.3 and 1.4 times compared to those in as-cast condition. Notable increase in the strength was achieved after one pass of TCAP while higher number of passes has no more effect. Microstructural investigation shows notable decrease in the grain size to around 500 nm from the primary value of - 150 μm. Dissolution and distribution of hard MglTAI12 phase in the grain boundaries of dynamically recrystallized UFG AZ91 with a mean grain size of - 500 nm was an interesting issue of TCAP processing at 200 ℃ compared to other severe plastic deformation processes.