This study was designed to explore the possibility of using ascitic mouse sarcoma cell line (S180) to validate the mouse tumor cell attachment assay for developmental toxicants, and to test the inhibitory effects of v...This study was designed to explore the possibility of using ascitic mouse sarcoma cell line (S180) to validate the mouse tumor cell attachment assay for developmental toxicants, and to test the inhibitory effects of various developmental toxicants. The results showed that 2 of 3 developmental toxicants under consideration, sodium pentobarbital and ethanol, significantly inhibited S180cells attachment to Concanavalin A-coaed surfaces. Inhibition was dependent on concentration, and the IC50 (the concentration tha reduced attachment by 50% ), of these 2 chemicals was 1.2×10-3mol/L and 1 .0 mol/L, respectively. Anoher developmental toxiant, hydmiortisone, did not show inhibitory activity. Two non-developmental toxicants, sodium chloride and glycine were also tested and these did not decrease attachment rates. The main results reported here were generally sindlar to those obtained with ascitic mouse ovdrian tumor cells as a model. Therefore, this study added further evidence to the conclusion that cell specificity does not lindt attachment inhibition to Con A-coated surfaces, so S180 cell may serve as an altemative cell model, especially when other cell lines are unavailable. Furthermore, after optimal validation, it can be suggested that an S180 cell attachment assay may be a candidate for a series of assays to detect developmental toxicants.展开更多
Successful chemotherapy with paclitaxel(PTX)is impeded by multidrug resistance(MDR)in tumor cells.In this study,lipid-albumin nanoassemblies co-loaded with borneol and paclitaxel(BOR/PTX LANs)were prepared to circumve...Successful chemotherapy with paclitaxel(PTX)is impeded by multidrug resistance(MDR)in tumor cells.In this study,lipid-albumin nanoassemblies co-loaded with borneol and paclitaxel(BOR/PTX LANs)were prepared to circumvent MDR in C6 glioma cells.The physiochemical properties including particle size,encapsulation efficiency and morphology were evaluated in vitro.Quantitative and qualitative investigations of cellular uptake were carried out in C6 glioma cells.The cytotoxicity of the BOR/PTX LANs was determined by MTT assay.After that,the tumor targeting was also evaluated in C6 glioma bearing mice by in vivo imaging analysis.BOR/PTX LANs have a higher entrapment efficiency(90.4±1.2%),small particle size(107.5±3.2 nm),narrow distribution(P.I.=0.171±0.02).The cellular uptake of PTX was significantly increased by BOR/PTX LANs compared with paclitaxel loaded lipidalbumin nanoassemblies(PTX LANs)in quantitative research.The result was further confirmed by confocal laser scanning microscopy qualitatively.The cellular uptake was energy-,timeand concentration-dependent,and clathrin-and endosome/lysosome-associated pathways were involved.The BOR/PTX LANs displayed a higher cytotoxicity agaist C6 glioma cells in comparion with PTX LANs and Taxol.Moreover,the encapsulation of BOR in LANs obviously increased the accumulation of the drug in tumor tissues,demonstrating the tumor targeted ability of BOR/PTX LANs.These results indicated that BOR/PTX LANs could overcome MDR by combination of drug delivery systems and P-gp inhibition,and shown the potential for treatment of gliomas.展开更多
AIM:The effects of vitamin D3 have been investigated on various tumors, including colorectal cancer (CRC). 25-hydroxyvitamin-D3-24-hydroxylase (CYP24A1), the enzyme that inactivates the active vitamin D3 metabolite 1,...AIM:The effects of vitamin D3 have been investigated on various tumors, including colorectal cancer (CRC). 25-hydroxyvitamin-D3-24-hydroxylase (CYP24A1), the enzyme that inactivates the active vitamin D3 metabolite 1,25-dihydroxyvitamin D3 (1,25-D3), is considered to be the main enzyme determining the biological halflife of 1,25-D3. During colorectal carcinogenesis, the expression and concentration of CYP24A1 increases significantly, suggesting that this phenomenon could be responsible for the proposed efficacy of 1,25-D3 in the treatment of CRC. The aim of this study was to investigate the anti-tumor effects of vitamin D3 on the human CRC cell line Caco-2 after inhibition of the cytochrome P450 component of CYP24A1 activity. METHODS:We examined the expression of CYP24A1 mRNA and the effects of 1,25-D3 on the cell line Caco-2 after inhibition of CYP24A1. Cell viability and proliferation were determined by means of sulforhodamine-B staining and bromodeoxyuridine incorporation, respectively, while cytotoxicity was estimated via the lactate dehydrogenase content of the cell culture supernatant. CYP24A1 expression was measured by realtime reverse transcription polymerase chain reaction. A number of tetralone compounds were synthesized to investigate their CP24A1 inhibitory activity. RESULTS:In response to 1,25-D3, CYP24A1 mRNA expression was enhanced significantly, in a time- and dose-dependent manner. Caco-2 cell viability and proliferation were not influenced by the administration of 1,25-D3 alone, but were markedly reduced by coadministration of 1,25-D3 and KD-35, a CYP24A1-inhibiting tetralone. Our data suggest that the mechanism of action of co-administered KD-35 and 1,25-D3 does not involve a direct cytotoxic effect, but rather the inhibition of cell proliferation. CONCLUSION:These findings demonstrate that the selective inhibition of CYP24A1 by compounds such as KD-35 may be a new approach for enhancement of the anti-tumor effect of 1,25-D3 on CRC.展开更多
Objective:To examine the role of heat shock protein 90(Hsp90) in the maintenance of actin cytoskeleton in human neuroblastoma tumor cells.Methods:Co-precipitation experiments were performed to examine Hsp90 interactio...Objective:To examine the role of heat shock protein 90(Hsp90) in the maintenance of actin cytoskeleton in human neuroblastoma tumor cells.Methods:Co-precipitation experiments were performed to examine Hsp90 interaction with actin.Hsp90 and actin interactions were evaluated by protein refolding and acto-myosin motility assays.17-(AUylamino)-17- demethoxygeldanamycin(17AAG) induced actin-cytoskeleton re-organization was examined by laser scanning confocal microcopy.Results:It was shown that inhibition of Hsp90 by 17AAC accelerates detergent induced cell lysis of neuroblastoma tumor cells through destabilization of actin cytoskeleton.The in vitro co-precipitation experiments showed that functional but not mutant Hsp90 binds with F-actin.Among biochemical modifications,phopshorylation and oligomerization enhanced Hsp90 binding with F-actin.F-actin binding to Hsp90 interfered with Hsp90 chaperone activity in protein refolding assays,and Hsp90 binding to F-actin interfered with actin motility on myosin coated flow cell.In the combination treatment,17AAG irreversibly augmented the effect of cytochalasin D,an inhibitor of actin polymerization.Conclusions:It can be concluded that Hsp90 binds to F-actin in tumor cells and maintains the cellular integrity. The results display a novel element of Hsp90 inhibition in destabilizing the actin cytoskeleton of tumor cells,therefore suggest that 17AAG combination with cytoskeletal disruptor may be effective in combating cancer.展开更多
Objective:To examine whether lipoxin A 4(LXA 4) has an inhibitory effect on tumor necrosis factor-α(TNF-α)-induced proliferation of glomerular mesangial cells of rat, and explore the molecular mechanisms of signal...Objective:To examine whether lipoxin A 4(LXA 4) has an inhibitory effect on tumor necrosis factor-α(TNF-α)-induced proliferation of glomerular mesangial cells of rat, and explore the molecular mechanisms of signal pathway in LXA 4 actions. Methods: Glomerular mesangial cells of rat were cultured and treated with TNF-α(10 ng/ml), with or without preincubation with LXA 4 at different concentrations. Cell proliferation was evaluated by monotetrazolium (MTT) colorimetric assay. The expression of cyclin E mRNA was measured by RT-PCR. Phosphorylated Akt1(Thr308) and p27 kip1 were analyzed by Western blotting. Results: TNF-α-stimulated proliferation of mesangial cells was inhibited by LXA 4 in a dose-dependent manner. The marked increments in cyclin E mRNA expression induced by TNF-α during proliferation of mesangial cells were down-regulated by LXA 4. Threonine phosphorylated Akt1 proteins at 308 site stimulated by TNF-α was reduced by LXA 4. TNF-α-induced decrements in expression of p27 kip1 proteins was ameliorated by LXA 4 in a dose-dependent manner. Conclusion: TNF-α-induced proliferation of rat mesangial cells can be inhibited by TXA 4 through the mechanism of Akt 1/p27 kip1 pathway-dependent signal transduction.展开更多
Bovine aortic endothelial cells(BAECs)were cultured with high glucose(33 mmol/L),4 mg/L green tea polyphenols(GTPs)or 4 mg/L GTPs co-treatment with high glucose for 24 h in the presence or absence of Bafilomycin...Bovine aortic endothelial cells(BAECs)were cultured with high glucose(33 mmol/L),4 mg/L green tea polyphenols(GTPs)or 4 mg/L GTPs co-treatment with high glucose for 24 h in the presence or absence of Bafilomycin-A1(BAF).We observed that high glucose increased the accumulation of LC3-II.Treatment with BAF did not further increase the accumulation of LC3-II.展开更多
Dear Editor: Glucose-dependent insulinotropic polypeptide (GIP) and proglucagon product glucagon-like peptide-1 (GLP- 1) and their corresponding receptors promote secretion of glucose-dependent insulin and may b...Dear Editor: Glucose-dependent insulinotropic polypeptide (GIP) and proglucagon product glucagon-like peptide-1 (GLP- 1) and their corresponding receptors promote secretion of glucose-dependent insulin and may be responsible for up to 70% of postprandial insulin secretions.展开更多
Background Neurofibromatosis type 1(NF1)is an autosomal dominant inherited disorder.It can affect multiple systems of the body and cause severe disfigurement and discomfort in these patients.There are two types of neu...Background Neurofibromatosis type 1(NF1)is an autosomal dominant inherited disorder.It can affect multiple systems of the body and cause severe disfigurement and discomfort in these patients.There are two types of neurofibromas,named cutaneous and plexiform neurofibromas.The latter type may transform into malignant peripheral nerve sheath tumors(MPNSTs).Surgical resection is difficult to perform owing to the complex tissue structure of neurofibromas;therefore,it is necessary to develop novel and effective therapies for the treatment of these tumors.Programmed cell death protein 1(PD-1)/programmed cell death-ligand 1(PD-L1)-related immune checkpoint inhibitors have been proven effective for various cancers,and the positive expression of PD-L1 and tumor-infiltrating lymphocytes(TILs)has been recognized as a biomarker for the response to immune checkpoint therapy.Methods We conducted immunohistochemistry(IHC)staining to detect PD-L1 expression in plexiform neurofibroma and MPNST tissue samples.Reverse transcription-polymerase chain reaction(RT-PCR)and western blotting were performed to detect PD-L1 and PD-1 expression in MPNST cell lines.IHC staining was used to show immune cell infiltration in NF1 and MPNST tissues.Results IHC staining showed PD-L1 positive expression in neurofibromas and MPNST tumor tissues.In addition,qPCR and western blotting showed high expression of PD-L1 in MPNST tumor cells.IHC staining revealed that aberrant T lymphocytes infiltrated the plexiform neurofibroma and MPNST tumor tissues.Conclusion These results indicate that immune checkpoint mechanisms may play a pivotal role in the development of NF1-related tumors,and immune checkpoint inhibitors may be effective for managing neurofibromas and MPNSTs.Combined therapy with other molecular agents may be explored in the future.展开更多
Objective:To test the effects of salidroside on formation and growth of glioma together with tumor microenvironment.Methods:Salidroside extracted from Rhodiola rosea was purified and treated on human glioma cells U2...Objective:To test the effects of salidroside on formation and growth of glioma together with tumor microenvironment.Methods:Salidroside extracted from Rhodiola rosea was purified and treated on human glioma cells U251 at the concentration of 20 μg/mL.3-(4,5-dimethylthiazol-2-yl)-2,5-dephenyltetrazolium bromide (MTT) assay for cytotoxicity and flow cytometry (FCM) for cell cycle analysis were performed.Then for in vivo study,xenotransplantation tumor model in nude mice was generated and treated with salidroside at the concentration of 50 mg/kg.d for totally 20 d.Body weight and tumor size were detected every 2 d after the treatment.The levels of 8-isoprostane,superoxide dismutase (SOD) and malondialdehyde (MDA),special markers for oxidative stress,were detected while immunofluoresence staining was performed for astrocyte detection.Results:For in vitro study,salidroside could decrease the viability of human glioma cells U251 and the growth of U251 cells at G0/G1 checkpoint during the cell cycle.For in vivo study,salidroside could also inhibit the growth of human glioma tissue in nude mice.The body weight of these nude mice treated with salidroside did not decrease as quickly as control group.In the tumor xenotransplantation nude mice model,mice were found of inhibition of oxidative stress by detection of biomarkers.Furthermore,overgrowth of astrocytes due to the stimulation of oxidative stress in the cortex of brain was inhibited after the treatment of salidroside.Conclusions:Salidroside could inhibit the formation and growth of glioma both in vivo and in vitro and improve the tumor microenvironment via inhibition of oxidative stress and astrocytes.展开更多
To examine the influence on apoptotic mechanisms following inhibition of polo-like kinases as therapeutically approach for cholangiocellular cancer treatment.METHODSAs most cholangiocarcinomas are chemotherapy-resista...To examine the influence on apoptotic mechanisms following inhibition of polo-like kinases as therapeutically approach for cholangiocellular cancer treatment.METHODSAs most cholangiocarcinomas are chemotherapy-resistant due to mechanisms preventing tumor cell death, we investigated the effect of Cisplatin on cholangiocellular carcinoma (CCA) cell lines KMCH-1 and Mz-Ch-1. Polo-like kinases (PLK) are important regulators of the cell cycle and their inhibition is discussed as a potential therapy while PLK inhibition can regulate apoptotic mediators. Here, cells were treated with PLK inhibitor BI6727 (Volasertib), Cisplatin, and in combination of both compounds. Cell viability was assessed by MTT; apoptosis was measured by DAPI staining and caspase-3/-7 assay. Western blot and qRT-PCR were used to measure expression levels of apoptosis-related molecules Bax and Bcl-2.RESULTSThe cell viability in the CCA cell lines KMCH-1 and Mz-Ch-1 was reduced in all treatment conditions compared to vehicle-treated cells. Co-treatment with BI6727 and cisplatin could even enhance the cytotoxic effect of cisplatin single treatment. Thus, co-treatment of cisplatin with BI6727 could slightly enhance the cytotoxic effect of the cisplatin in both cell lines whereas there was evidence of increased apoptosis induction solely in Mz-Ch-1 as compared to KMCH-1. Moreover, PLK inhibition decreases protein levels of Bcl-2; an effect that can be reversed by the proteasomal degradation inhibitor MG-132. In contrast, protein levels of Bax were not found to be altered by PLK inhibition. These findings indicate that cytotoxic effects of Cisplatin in Mz-Ch-1 cells can be enhanced by cotreatment with BI6727.CONCLUSIONIn conclusion, BI6727 treatment can sensitize CCA cells to cisplatin-induced apoptosis with proteasomal Bcl-2 degradation as an additional pro-apoptotic effect.展开更多
The effects of HAP nanoparticles on growth of primary normal animal liver cells and on growth of hepatocarcinoma cell line Bel 7402 in vitro were studied respectively and were compared with each other.The results show...The effects of HAP nanoparticles on growth of primary normal animal liver cells and on growth of hepatocarcinoma cell line Bel 7402 in vitro were studied respectively and were compared with each other.The results showed that HAP nanoparticles in certain concentration inhibited growth of cancer cells significantly while did not inhibite normal cells in the same concentration.The inhibition ratio was as high as very high dosage of adriamycin.It was concluded that HAP nanoparticles can selectively inhibited cancer cells.展开更多
Purpose: To evaluate effect of green tea extract (-)-Epigallocatechin-3-gallate (EGCG) in cultured rabbit lens epithelial cells in order to pave a new way to postcapsular opacity (PCO) prevention.Methods: Cell surviva...Purpose: To evaluate effect of green tea extract (-)-Epigallocatechin-3-gallate (EGCG) in cultured rabbit lens epithelial cells in order to pave a new way to postcapsular opacity (PCO) prevention.Methods: Cell survival rate was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) coloimetric assay. Cell apoptosis was detected by electron microscopy, Hochest 33258 stain and flow cytometer. DNA fragment was detected using agarose gel electrophoresis.Result: Proliferation of the cultured rabbit lens epithelia cells was inhibited by EGCG in a dose and time dependent manner. Morphologic study showed that the cells became shrunk, round shaped with their nuclei condensed and broken. Apoptotic bodies were also seen under electron microscope and in Hochest 33258 stain assay 24 hours after EGCG was added to the medium. DNA ladders were shown in agarose gel eletrophoresis. In flow cytometry assay, apoptosis peak was also evident.Conclusion: Green Tea Constituent(-)展开更多
Objective: To examine whether lipoxin A4 (LXA4) has an inhibitory effect on tumor necrosis factor-α(TNF-α-induced DNA synthesis of glomerular mesangial cells of rat, and explore the molecular mechanisms of LXA4 ...Objective: To examine whether lipoxin A4 (LXA4) has an inhibitory effect on tumor necrosis factor-α(TNF-α-induced DNA synthesis of glomerular mesangial cells of rat, and explore the molecular mechanisms of LXA4 action. Methods: Glomerular mesangial cells of rat were cultured and preincubated with LXA4 at different concentrations, and then treated with TNF-α( 10 ng/ml). DNA synthesis was assessed by the incorporation of [^3H]-thymidine in mesangial cells. Expression of cyclin E protein was determined by Western blotting analysis. Activities of signal transducers and activators of transcription-3 (STAT3) were analyzed by electrophoretic mobility shift assay (EMSA). Results: TNF-α-stimulated DNA synthesis of mesangial cells, upregulafion of cyclin E protein and STAT3 activities were inhibited by LXA4 in a dose-dependent manner. Conclusion: TNF-α-induced DNA synthesis of mesangial cells can be inhibited by TXA4 probably through the mechanism of Jak1/STAT3 pathway-dependent signal transduction.展开更多
The apoptosis of osteosarcoma cells treated with irradiation by 153Sm-EDTMP was studied. The morphological changes in osteosarcoma cells were observed by fluorescence microscopy. It was found that osteosarcoma cells e...The apoptosis of osteosarcoma cells treated with irradiation by 153Sm-EDTMP was studied. The morphological changes in osteosarcoma cells were observed by fluorescence microscopy. It was found that osteosarcoma cells exposed with 153Sm-EDTMP displayed significant nuclear fragmentation and marked pyknosis. With the prolongation of observing period, the membrane bound apoptotic bodies formation was observed. It should be noted, that with the lengthening of irradiation time by 153Sm-EDTMP, the inhibition rate of proliferation of osteosarcoma cells increased progressively.展开更多
Objective: To study the expression of the inducible nitric oxide synthase (iNOS) gene and the effects of tumor necrosis factor-α(TNF-a) and interferon-γ(IFN-g)on proliferation of the continuous cultured human colon ...Objective: To study the expression of the inducible nitric oxide synthase (iNOS) gene and the effects of tumor necrosis factor-α(TNF-a) and interferon-γ(IFN-g)on proliferation of the continuous cultured human colon cancer cell line CCL229. Methods: Using the molecular and biochemical techniques and electron microscopy to analyze the expression of iNOS, production of NO and growth characteristics of human colon cancer cells. Results: cytokine treatment can induce expression of the iNOS gene and production of nitric oxide was significantly higher after treatment of CCL229 cells with TNF-αor IFN-γ. Treatment with either cytokine or a combination of both significantly increased levels of Malondialdehyde (MDA) over control. Furthermore, cytokine treatment increased the proliferation inhibition rate as assessed in vitro and decreased the cell proliferation index on flow cytometry. Electron microscopy showed that cells treated with cytokines had fewer pseudopodia or cell processes than control cells and that cytokine treated cells had dilatation of the mitochondria and endoplasmic reticulum and dilated vesicular or tubular cisternae. Conclusion: Our findings indicate that TNF-α and IFN-γ induce the expression of iNOS gene in CCL229 cells, which increases the production of nitric oxide, inhibits proliferation, causes lipid peroxidation, and results in ultrastructural changes.展开更多
Objective:To identify new favorable agents and develop novel approaches for the chemoprevention and treatment of superficial bladder cancer and investigate the effects of combination of retinoids and interferon α-2a ...Objective:To identify new favorable agents and develop novel approaches for the chemoprevention and treatment of superficial bladder cancer and investigate the effects of combination of retinoids and interferon α-2a on growth inhibition and apoptosis induction in bladder cancer cell lines. Methods:Four bladder cancer cell lines,grade 1 to 3,and two retinoids,all-trans-retinoic acid(ATRA),9-cis retinoic acid(9cRA),combined with interferon α-2a(INF),were used in the study.We compared the competence of these agents to inhibit growth,induce apoptosis,affect the expression of nuclear retinoid receptors,and modulate STAT1 protein. Results: Most of the bladder cancer cell lines were resistant to the effect of ATRA and 9cRA on growth inhibition and apoptosis induction,even at higher concentration(10 -5M).The effects of ATRA and 9c RA on cell growth and apoptosis were enhanced by INF α- 2a. Combination of ATRA and IFNα-2a induced RARβ and Stat 1 expression in three bladder cancer cell lines. Conclusion:The results demonstrated that INFα-2a synergize with the inhibitory effect of ATRA and 9c RA on the growth inhibition and apoptosis of bladder cancer cells in vitro,which suggested that it has a potential interest for the treatment of transitional cell carcinoma of bladder.展开更多
Recently ammonia has been investigated as a fuel for SOFCs (solid oxide fuel cells). Ammonia is widely produced and transported globally, and stores hydrogen in its bonds making it an excellent fuel for fuel cells. ...Recently ammonia has been investigated as a fuel for SOFCs (solid oxide fuel cells). Ammonia is widely produced and transported globally, and stores hydrogen in its bonds making it an excellent fuel for fuel cells. The high temperature of SOFCs allows for internal decomposition of ammonia. Previous models of ammonia-fed SOFCs treat ammonia decomposition as having first order dependence on ammonia partial pressure, and ignore the effect of hydrogen inhibition. However, research has shown that at low temperatures (≤ 600 ℃) and low ammonia partial pressures, the rate of ammonia decomposition is inhibited by the presence of hydrogen. This hydrogen inhibition effect was studied and implemented in a model of an ammonia decomposition reactor. Results showed that it may significantly decrease the rate of hydrogen generation. This work sets the foundation for more accurate modelling of intermediate temperature ammonia-fed SOFCs.展开更多
A new method of studying the corrosion inhibition mechanism of rare earth metal(REM) on LC4 Al alloy with the spilt cell technique was studied. The principle and experimental method of the spilt cell technique were ...A new method of studying the corrosion inhibition mechanism of rare earth metal(REM) on LC4 Al alloy with the spilt cell technique was studied. The principle and experimental method of the spilt cell technique were analyzed. By measuring the change of net-electric current between the two electrodes caused by the change of the amount of oxygen in the solution and the addition of CeCl3, the influence of corrosive performance of CeCl3 on LC4 super-power aluminum "alloy in the 0.1 mol· L^-1 NaCl solution was investigated. Meanwhile, the conditional changes of pH values, CeCl3 solution, additire and time of performance were also studied. Finally, the features of electrode surface were revealed by using SEM and X-ray energy-dispersive spectrometry (EDS). By combining these with other electric chemical techniques, such as potential-time curve, polarization curve et al.展开更多
文摘This study was designed to explore the possibility of using ascitic mouse sarcoma cell line (S180) to validate the mouse tumor cell attachment assay for developmental toxicants, and to test the inhibitory effects of various developmental toxicants. The results showed that 2 of 3 developmental toxicants under consideration, sodium pentobarbital and ethanol, significantly inhibited S180cells attachment to Concanavalin A-coaed surfaces. Inhibition was dependent on concentration, and the IC50 (the concentration tha reduced attachment by 50% ), of these 2 chemicals was 1.2×10-3mol/L and 1 .0 mol/L, respectively. Anoher developmental toxiant, hydmiortisone, did not show inhibitory activity. Two non-developmental toxicants, sodium chloride and glycine were also tested and these did not decrease attachment rates. The main results reported here were generally sindlar to those obtained with ascitic mouse ovdrian tumor cells as a model. Therefore, this study added further evidence to the conclusion that cell specificity does not lindt attachment inhibition to Con A-coated surfaces, so S180 cell may serve as an altemative cell model, especially when other cell lines are unavailable. Furthermore, after optimal validation, it can be suggested that an S180 cell attachment assay may be a candidate for a series of assays to detect developmental toxicants.
文摘Successful chemotherapy with paclitaxel(PTX)is impeded by multidrug resistance(MDR)in tumor cells.In this study,lipid-albumin nanoassemblies co-loaded with borneol and paclitaxel(BOR/PTX LANs)were prepared to circumvent MDR in C6 glioma cells.The physiochemical properties including particle size,encapsulation efficiency and morphology were evaluated in vitro.Quantitative and qualitative investigations of cellular uptake were carried out in C6 glioma cells.The cytotoxicity of the BOR/PTX LANs was determined by MTT assay.After that,the tumor targeting was also evaluated in C6 glioma bearing mice by in vivo imaging analysis.BOR/PTX LANs have a higher entrapment efficiency(90.4±1.2%),small particle size(107.5±3.2 nm),narrow distribution(P.I.=0.171±0.02).The cellular uptake of PTX was significantly increased by BOR/PTX LANs compared with paclitaxel loaded lipidalbumin nanoassemblies(PTX LANs)in quantitative research.The result was further confirmed by confocal laser scanning microscopy qualitatively.The cellular uptake was energy-,timeand concentration-dependent,and clathrin-and endosome/lysosome-associated pathways were involved.The BOR/PTX LANs displayed a higher cytotoxicity agaist C6 glioma cells in comparion with PTX LANs and Taxol.Moreover,the encapsulation of BOR in LANs obviously increased the accumulation of the drug in tumor tissues,demonstrating the tumor targeted ability of BOR/PTX LANs.These results indicated that BOR/PTX LANs could overcome MDR by combination of drug delivery systems and P-gp inhibition,and shown the potential for treatment of gliomas.
基金Supported by Research Grants ETT022/2006 and ETT151/2009 from the Ministry of Health,HungaryTáMOP-4.2.1/B-09/1/KONV-2010-0005 from Creating the Center of Excellence at the University of Szegedsupported by the European Union and cofinanced by the European Regional Fund
文摘AIM:The effects of vitamin D3 have been investigated on various tumors, including colorectal cancer (CRC). 25-hydroxyvitamin-D3-24-hydroxylase (CYP24A1), the enzyme that inactivates the active vitamin D3 metabolite 1,25-dihydroxyvitamin D3 (1,25-D3), is considered to be the main enzyme determining the biological halflife of 1,25-D3. During colorectal carcinogenesis, the expression and concentration of CYP24A1 increases significantly, suggesting that this phenomenon could be responsible for the proposed efficacy of 1,25-D3 in the treatment of CRC. The aim of this study was to investigate the anti-tumor effects of vitamin D3 on the human CRC cell line Caco-2 after inhibition of the cytochrome P450 component of CYP24A1 activity. METHODS:We examined the expression of CYP24A1 mRNA and the effects of 1,25-D3 on the cell line Caco-2 after inhibition of CYP24A1. Cell viability and proliferation were determined by means of sulforhodamine-B staining and bromodeoxyuridine incorporation, respectively, while cytotoxicity was estimated via the lactate dehydrogenase content of the cell culture supernatant. CYP24A1 expression was measured by realtime reverse transcription polymerase chain reaction. A number of tetralone compounds were synthesized to investigate their CP24A1 inhibitory activity. RESULTS:In response to 1,25-D3, CYP24A1 mRNA expression was enhanced significantly, in a time- and dose-dependent manner. Caco-2 cell viability and proliferation were not influenced by the administration of 1,25-D3 alone, but were markedly reduced by coadministration of 1,25-D3 and KD-35, a CYP24A1-inhibiting tetralone. Our data suggest that the mechanism of action of co-administered KD-35 and 1,25-D3 does not involve a direct cytotoxic effect, but rather the inhibition of cell proliferation. CONCLUSION:These findings demonstrate that the selective inhibition of CYP24A1 by compounds such as KD-35 may be a new approach for enhancement of the anti-tumor effect of 1,25-D3 on CRC.
基金supported by Department of Biotechnology,Department of Science and Technology,Government of India
文摘Objective:To examine the role of heat shock protein 90(Hsp90) in the maintenance of actin cytoskeleton in human neuroblastoma tumor cells.Methods:Co-precipitation experiments were performed to examine Hsp90 interaction with actin.Hsp90 and actin interactions were evaluated by protein refolding and acto-myosin motility assays.17-(AUylamino)-17- demethoxygeldanamycin(17AAG) induced actin-cytoskeleton re-organization was examined by laser scanning confocal microcopy.Results:It was shown that inhibition of Hsp90 by 17AAC accelerates detergent induced cell lysis of neuroblastoma tumor cells through destabilization of actin cytoskeleton.The in vitro co-precipitation experiments showed that functional but not mutant Hsp90 binds with F-actin.Among biochemical modifications,phopshorylation and oligomerization enhanced Hsp90 binding with F-actin.F-actin binding to Hsp90 interfered with Hsp90 chaperone activity in protein refolding assays,and Hsp90 binding to F-actin interfered with actin motility on myosin coated flow cell.In the combination treatment,17AAG irreversibly augmented the effect of cytochalasin D,an inhibitor of actin polymerization.Conclusions:It can be concluded that Hsp90 binds to F-actin in tumor cells and maintains the cellular integrity. The results display a novel element of Hsp90 inhibition in destabilizing the actin cytoskeleton of tumor cells,therefore suggest that 17AAG combination with cytoskeletal disruptor may be effective in combating cancer.
文摘Objective:To examine whether lipoxin A 4(LXA 4) has an inhibitory effect on tumor necrosis factor-α(TNF-α)-induced proliferation of glomerular mesangial cells of rat, and explore the molecular mechanisms of signal pathway in LXA 4 actions. Methods: Glomerular mesangial cells of rat were cultured and treated with TNF-α(10 ng/ml), with or without preincubation with LXA 4 at different concentrations. Cell proliferation was evaluated by monotetrazolium (MTT) colorimetric assay. The expression of cyclin E mRNA was measured by RT-PCR. Phosphorylated Akt1(Thr308) and p27 kip1 were analyzed by Western blotting. Results: TNF-α-stimulated proliferation of mesangial cells was inhibited by LXA 4 in a dose-dependent manner. The marked increments in cyclin E mRNA expression induced by TNF-α during proliferation of mesangial cells were down-regulated by LXA 4. Threonine phosphorylated Akt1 proteins at 308 site stimulated by TNF-α was reduced by LXA 4. TNF-α-induced decrements in expression of p27 kip1 proteins was ameliorated by LXA 4 in a dose-dependent manner. Conclusion: TNF-α-induced proliferation of rat mesangial cells can be inhibited by TXA 4 through the mechanism of Akt 1/p27 kip1 pathway-dependent signal transduction.
基金supported by grants(No.81273060,81302423,81373007)from the National Natural Science Foundation of China
文摘Bovine aortic endothelial cells(BAECs)were cultured with high glucose(33 mmol/L),4 mg/L green tea polyphenols(GTPs)or 4 mg/L GTPs co-treatment with high glucose for 24 h in the presence or absence of Bafilomycin-A1(BAF).We observed that high glucose increased the accumulation of LC3-II.Treatment with BAF did not further increase the accumulation of LC3-II.
文摘Dear Editor: Glucose-dependent insulinotropic polypeptide (GIP) and proglucagon product glucagon-like peptide-1 (GLP- 1) and their corresponding receptors promote secretion of glucose-dependent insulin and may be responsible for up to 70% of postprandial insulin secretions.
基金This work was supported by the grants from the Youth Doctor Collaborative Innovation Team Project(QC201803)of Shanghai Ninth People’s Hospital of Shanghai Jiao Tong University School of Medicine,Shanghai Youth Top-Notch Talent Program(201809004)“Chenguang Program”supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(19CG18)+3 种基金Science and Technology Commission of Shanghai Municipality(19JC1413)Shanghai Rising Star Program(20QA1405600)Innovative research team of high-level local universities in Shanghai(SSMU-ZDCX20180700)Shanghai Municipal Key Clinical Specialty(shslczdzk00901).
文摘Background Neurofibromatosis type 1(NF1)is an autosomal dominant inherited disorder.It can affect multiple systems of the body and cause severe disfigurement and discomfort in these patients.There are two types of neurofibromas,named cutaneous and plexiform neurofibromas.The latter type may transform into malignant peripheral nerve sheath tumors(MPNSTs).Surgical resection is difficult to perform owing to the complex tissue structure of neurofibromas;therefore,it is necessary to develop novel and effective therapies for the treatment of these tumors.Programmed cell death protein 1(PD-1)/programmed cell death-ligand 1(PD-L1)-related immune checkpoint inhibitors have been proven effective for various cancers,and the positive expression of PD-L1 and tumor-infiltrating lymphocytes(TILs)has been recognized as a biomarker for the response to immune checkpoint therapy.Methods We conducted immunohistochemistry(IHC)staining to detect PD-L1 expression in plexiform neurofibroma and MPNST tissue samples.Reverse transcription-polymerase chain reaction(RT-PCR)and western blotting were performed to detect PD-L1 and PD-1 expression in MPNST cell lines.IHC staining was used to show immune cell infiltration in NF1 and MPNST tissues.Results IHC staining showed PD-L1 positive expression in neurofibromas and MPNST tumor tissues.In addition,qPCR and western blotting showed high expression of PD-L1 in MPNST tumor cells.IHC staining revealed that aberrant T lymphocytes infiltrated the plexiform neurofibroma and MPNST tumor tissues.Conclusion These results indicate that immune checkpoint mechanisms may play a pivotal role in the development of NF1-related tumors,and immune checkpoint inhibitors may be effective for managing neurofibromas and MPNSTs.Combined therapy with other molecular agents may be explored in the future.
基金supported by the National Natural Science Foundation of China(No.81141080)Jiangsu Provincial Natural Science Foundation(SBK201340596)
文摘Objective:To test the effects of salidroside on formation and growth of glioma together with tumor microenvironment.Methods:Salidroside extracted from Rhodiola rosea was purified and treated on human glioma cells U251 at the concentration of 20 μg/mL.3-(4,5-dimethylthiazol-2-yl)-2,5-dephenyltetrazolium bromide (MTT) assay for cytotoxicity and flow cytometry (FCM) for cell cycle analysis were performed.Then for in vivo study,xenotransplantation tumor model in nude mice was generated and treated with salidroside at the concentration of 50 mg/kg.d for totally 20 d.Body weight and tumor size were detected every 2 d after the treatment.The levels of 8-isoprostane,superoxide dismutase (SOD) and malondialdehyde (MDA),special markers for oxidative stress,were detected while immunofluoresence staining was performed for astrocyte detection.Results:For in vitro study,salidroside could decrease the viability of human glioma cells U251 and the growth of U251 cells at G0/G1 checkpoint during the cell cycle.For in vivo study,salidroside could also inhibit the growth of human glioma tissue in nude mice.The body weight of these nude mice treated with salidroside did not decrease as quickly as control group.In the tumor xenotransplantation nude mice model,mice were found of inhibition of oxidative stress by detection of biomarkers.Furthermore,overgrowth of astrocytes due to the stimulation of oxidative stress in the cortex of brain was inhibited after the treatment of salidroside.Conclusions:Salidroside could inhibit the formation and growth of glioma both in vivo and in vitro and improve the tumor microenvironment via inhibition of oxidative stress and astrocytes.
基金Supported by DFG/German Research Foundation,No.FI 1630/3-1 and No.IFORES D/107-114400(to CDF)
文摘To examine the influence on apoptotic mechanisms following inhibition of polo-like kinases as therapeutically approach for cholangiocellular cancer treatment.METHODSAs most cholangiocarcinomas are chemotherapy-resistant due to mechanisms preventing tumor cell death, we investigated the effect of Cisplatin on cholangiocellular carcinoma (CCA) cell lines KMCH-1 and Mz-Ch-1. Polo-like kinases (PLK) are important regulators of the cell cycle and their inhibition is discussed as a potential therapy while PLK inhibition can regulate apoptotic mediators. Here, cells were treated with PLK inhibitor BI6727 (Volasertib), Cisplatin, and in combination of both compounds. Cell viability was assessed by MTT; apoptosis was measured by DAPI staining and caspase-3/-7 assay. Western blot and qRT-PCR were used to measure expression levels of apoptosis-related molecules Bax and Bcl-2.RESULTSThe cell viability in the CCA cell lines KMCH-1 and Mz-Ch-1 was reduced in all treatment conditions compared to vehicle-treated cells. Co-treatment with BI6727 and cisplatin could even enhance the cytotoxic effect of cisplatin single treatment. Thus, co-treatment of cisplatin with BI6727 could slightly enhance the cytotoxic effect of the cisplatin in both cell lines whereas there was evidence of increased apoptosis induction solely in Mz-Ch-1 as compared to KMCH-1. Moreover, PLK inhibition decreases protein levels of Bcl-2; an effect that can be reversed by the proteasomal degradation inhibitor MG-132. In contrast, protein levels of Bax were not found to be altered by PLK inhibition. These findings indicate that cytotoxic effects of Cisplatin in Mz-Ch-1 cells can be enhanced by cotreatment with BI6727.CONCLUSIONIn conclusion, BI6727 treatment can sensitize CCA cells to cisplatin-induced apoptosis with proteasomal Bcl-2 degradation as an additional pro-apoptotic effect.
基金the National Science Foundation of China( No.3 9770 2 2 5)China postdoctoral Science Foundation
文摘The effects of HAP nanoparticles on growth of primary normal animal liver cells and on growth of hepatocarcinoma cell line Bel 7402 in vitro were studied respectively and were compared with each other.The results showed that HAP nanoparticles in certain concentration inhibited growth of cancer cells significantly while did not inhibite normal cells in the same concentration.The inhibition ratio was as high as very high dosage of adriamycin.It was concluded that HAP nanoparticles can selectively inhibited cancer cells.
文摘Purpose: To evaluate effect of green tea extract (-)-Epigallocatechin-3-gallate (EGCG) in cultured rabbit lens epithelial cells in order to pave a new way to postcapsular opacity (PCO) prevention.Methods: Cell survival rate was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) coloimetric assay. Cell apoptosis was detected by electron microscopy, Hochest 33258 stain and flow cytometer. DNA fragment was detected using agarose gel electrophoresis.Result: Proliferation of the cultured rabbit lens epithelia cells was inhibited by EGCG in a dose and time dependent manner. Morphologic study showed that the cells became shrunk, round shaped with their nuclei condensed and broken. Apoptotic bodies were also seen under electron microscope and in Hochest 33258 stain assay 24 hours after EGCG was added to the medium. DNA ladders were shown in agarose gel eletrophoresis. In flow cytometry assay, apoptosis peak was also evident.Conclusion: Green Tea Constituent(-)
文摘Objective: To examine whether lipoxin A4 (LXA4) has an inhibitory effect on tumor necrosis factor-α(TNF-α-induced DNA synthesis of glomerular mesangial cells of rat, and explore the molecular mechanisms of LXA4 action. Methods: Glomerular mesangial cells of rat were cultured and preincubated with LXA4 at different concentrations, and then treated with TNF-α( 10 ng/ml). DNA synthesis was assessed by the incorporation of [^3H]-thymidine in mesangial cells. Expression of cyclin E protein was determined by Western blotting analysis. Activities of signal transducers and activators of transcription-3 (STAT3) were analyzed by electrophoretic mobility shift assay (EMSA). Results: TNF-α-stimulated DNA synthesis of mesangial cells, upregulafion of cyclin E protein and STAT3 activities were inhibited by LXA4 in a dose-dependent manner. Conclusion: TNF-α-induced DNA synthesis of mesangial cells can be inhibited by TXA4 probably through the mechanism of Jak1/STAT3 pathway-dependent signal transduction.
基金Supported by the International Atomic Energy Agency
文摘The apoptosis of osteosarcoma cells treated with irradiation by 153Sm-EDTMP was studied. The morphological changes in osteosarcoma cells were observed by fluorescence microscopy. It was found that osteosarcoma cells exposed with 153Sm-EDTMP displayed significant nuclear fragmentation and marked pyknosis. With the prolongation of observing period, the membrane bound apoptotic bodies formation was observed. It should be noted, that with the lengthening of irradiation time by 153Sm-EDTMP, the inhibition rate of proliferation of osteosarcoma cells increased progressively.
基金This work was supported by a grant from the Scientific Research Foundation of Ministry of Public Health of PR China (No. 96-1-204).
文摘Objective: To study the expression of the inducible nitric oxide synthase (iNOS) gene and the effects of tumor necrosis factor-α(TNF-a) and interferon-γ(IFN-g)on proliferation of the continuous cultured human colon cancer cell line CCL229. Methods: Using the molecular and biochemical techniques and electron microscopy to analyze the expression of iNOS, production of NO and growth characteristics of human colon cancer cells. Results: cytokine treatment can induce expression of the iNOS gene and production of nitric oxide was significantly higher after treatment of CCL229 cells with TNF-αor IFN-γ. Treatment with either cytokine or a combination of both significantly increased levels of Malondialdehyde (MDA) over control. Furthermore, cytokine treatment increased the proliferation inhibition rate as assessed in vitro and decreased the cell proliferation index on flow cytometry. Electron microscopy showed that cells treated with cytokines had fewer pseudopodia or cell processes than control cells and that cytokine treated cells had dilatation of the mitochondria and endoplasmic reticulum and dilated vesicular or tubular cisternae. Conclusion: Our findings indicate that TNF-α and IFN-γ induce the expression of iNOS gene in CCL229 cells, which increases the production of nitric oxide, inhibits proliferation, causes lipid peroxidation, and results in ultrastructural changes.
文摘Objective:To identify new favorable agents and develop novel approaches for the chemoprevention and treatment of superficial bladder cancer and investigate the effects of combination of retinoids and interferon α-2a on growth inhibition and apoptosis induction in bladder cancer cell lines. Methods:Four bladder cancer cell lines,grade 1 to 3,and two retinoids,all-trans-retinoic acid(ATRA),9-cis retinoic acid(9cRA),combined with interferon α-2a(INF),were used in the study.We compared the competence of these agents to inhibit growth,induce apoptosis,affect the expression of nuclear retinoid receptors,and modulate STAT1 protein. Results: Most of the bladder cancer cell lines were resistant to the effect of ATRA and 9cRA on growth inhibition and apoptosis induction,even at higher concentration(10 -5M).The effects of ATRA and 9c RA on cell growth and apoptosis were enhanced by INF α- 2a. Combination of ATRA and IFNα-2a induced RARβ and Stat 1 expression in three bladder cancer cell lines. Conclusion:The results demonstrated that INFα-2a synergize with the inhibitory effect of ATRA and 9c RA on the growth inhibition and apoptosis of bladder cancer cells in vitro,which suggested that it has a potential interest for the treatment of transitional cell carcinoma of bladder.
文摘Recently ammonia has been investigated as a fuel for SOFCs (solid oxide fuel cells). Ammonia is widely produced and transported globally, and stores hydrogen in its bonds making it an excellent fuel for fuel cells. The high temperature of SOFCs allows for internal decomposition of ammonia. Previous models of ammonia-fed SOFCs treat ammonia decomposition as having first order dependence on ammonia partial pressure, and ignore the effect of hydrogen inhibition. However, research has shown that at low temperatures (≤ 600 ℃) and low ammonia partial pressures, the rate of ammonia decomposition is inhibited by the presence of hydrogen. This hydrogen inhibition effect was studied and implemented in a model of an ammonia decomposition reactor. Results showed that it may significantly decrease the rate of hydrogen generation. This work sets the foundation for more accurate modelling of intermediate temperature ammonia-fed SOFCs.
文摘A new method of studying the corrosion inhibition mechanism of rare earth metal(REM) on LC4 Al alloy with the spilt cell technique was studied. The principle and experimental method of the spilt cell technique were analyzed. By measuring the change of net-electric current between the two electrodes caused by the change of the amount of oxygen in the solution and the addition of CeCl3, the influence of corrosive performance of CeCl3 on LC4 super-power aluminum "alloy in the 0.1 mol· L^-1 NaCl solution was investigated. Meanwhile, the conditional changes of pH values, CeCl3 solution, additire and time of performance were also studied. Finally, the features of electrode surface were revealed by using SEM and X-ray energy-dispersive spectrometry (EDS). By combining these with other electric chemical techniques, such as potential-time curve, polarization curve et al.