OBJECTIVE To study the effectiveness on the tumor load and cellular immune function of percutaneous cryoablation (argon-helium cryoablative system, AHCS) combined with transarterial chemoembolization (TACE) for tr...OBJECTIVE To study the effectiveness on the tumor load and cellular immune function of percutaneous cryoablation (argon-helium cryoablative system, AHCS) combined with transarterial chemoembolization (TACE) for treating large hepatocellular carcinomas (HCCs) with diameters over 10 ca. METHODS A total of 48 HCC patients were treated with AHCS after TACE. Tumor sizes ranged from 10 to 14 cm. All cases were a hypervascular type. There were 38 Child A cases and 10 Child B cases. Forty were AFP positive and 8 negative. The patients were randomized with therapy group consisting of 26 cases and the control group 22 cases. The therapy group received AHCS 4 weeks following TACE treatment. Reexamination included pathology, tumor markers, T-lymphocyte subgroup levels and computed tomography or MRI. The necrosis rate of the tumor load was calculated by Cavalieri's theory. EORTC QLQ-C30 was used in quality of life evaluation. RESULTS The average tumor-load reduction rate (necrosis rate) was 8.07% after TACE, and 28.65% after AHCS. Coagulation necrosis was produced in the target area. The tumor markers deceased significantly after AHCS. Tumor-load reduction after AHCS was more significant than after TACE. Suppression of cellular immunity after TACE was significant. In contrast, CD3^+, CD4^+ and NK increased after AHCS and an abnormal T-lymphocyte distribution was corrected. Quality of life after AHCS increased according to the EORTC QLQ-C30 evaluation. No severe complications occurred. CONCLUSION Percutaneous AHCS cryoablation after TACE reduced the tumor load in the short term. At the same time, cellular immune function was increased after AHCS. TACE was critical in increasing the therapeutic efficacy of AHCS because of its embolisation of blood vessels preventing a Flow Effect. Reduction of the tumor load in the short term may conduce to increase cellular immunity. Percutaneous AHCS cryoablation combined with TACE can reduce the tumor load, improve cellular immunity and increase quality of life of HCC patients. This type of therapy deserves to be studied further research.展开更多
Background: The efficacy and safety of dexmedetomidine during the anesthesia induction of intracranial tumor patients remain unknown. We wondered whether loading infusion of dexmedetomidine 1 μg/kg over 10 min to int...Background: The efficacy and safety of dexmedetomidine during the anesthesia induction of intracranial tumor patients remain unknown. We wondered whether loading infusion of dexmedetomidine 1 μg/kg over 10 min to intracranial tumor patients was as efficient and safe as to those abdominal disease patients. Methods: Patients aged 18-60 years, male or female, ASA I or II, scheduled for intracranial tumor resection (Group N, n = 30) or abdominal operation (Group A, n = 30) were enrolled in this observational trial. Dexmedetomidine was administrated with a loading dosage of 1 μg/kg over 10 min following with continuous infusing of 0.5 μg/kg/h. Fentanyl, propofol and rocuronium were sequentially administered for anesthesia induction. Heart rate (HR), blood pressure (BP), pulse oxygen saturation (SpO2), bispectral index (BIS) and other adverse effects were recorded from the beginning of loading infusion of dexmedetomidine to the end of endotracheal intubation. Results: Among with loading infusion, HR and BIS value decreased and were significantly lower at the end of infusion than before infusion (P P > 0.05). One patient of Group N dropped out from this trial because of a serious headache. 14 of 29 patients during dexmedetomidine loading infusion suffered hypoxemia (SpO2 P Conclusion: A loading dosage of 1 μg/kg of dexmedetomidine was not suitable for the anesthesia induction of intracranial tumor patients as compared to patients undergoing abdominal operation.展开更多
Paclitaxel(PTX) is an important cancer chemotherapeutic drug. To ameliorate the disadvantages of paclitaxel, this study designed liposomes to load paclitaxel, adding the acidsensitive material cholesteryl hemisuccinat...Paclitaxel(PTX) is an important cancer chemotherapeutic drug. To ameliorate the disadvantages of paclitaxel, this study designed liposomes to load paclitaxel, adding the acidsensitive material cholesteryl hemisuccinate(CHEMS) to increase the accumulation of the drug in the tumor site. To begin, we used a high-performance liquid chromatography(HPLC)method to determine the content of PTX and the encapsulation efficiency. Then, we prepared paclitaxel-loaded acid-sensitive liposomes(PTX ASLs) by a thin-film dispersion method.We investigated the physical and chemical properties of the liposomes. The particle size was 210.8 nm, the polydispersity index(PDI) was 0.182 and the ζ-potential was-31.2 mV.The liposome shape was observed by transmission electron microscopy(TEM), and the results showed that the liposomes were round with a homogenous size distribution. The release characteristics of the liposomes in vitro were studied via a dynamic dialysis method. The results showed that the prepared liposomes had acid sensitivity and sustained release properties. An in vitro cellular uptake assay of MCF-7 cells showed that the cell uptake of coumarin-6-loaded acid-sensitive liposomes was significantly higher than that of free coumarin-6. The cytotoxicity of the PTX ASLs was significantly higher than that of paclitaxel. In conclusion,these results showed that the prepared liposomes had clear acid-sensitive release characteristics and a higher cell uptake rate and cytotoxicity than free PTX. The system is very suitable for targeted cancer therapy with paclitaxel.展开更多
文摘OBJECTIVE To study the effectiveness on the tumor load and cellular immune function of percutaneous cryoablation (argon-helium cryoablative system, AHCS) combined with transarterial chemoembolization (TACE) for treating large hepatocellular carcinomas (HCCs) with diameters over 10 ca. METHODS A total of 48 HCC patients were treated with AHCS after TACE. Tumor sizes ranged from 10 to 14 cm. All cases were a hypervascular type. There were 38 Child A cases and 10 Child B cases. Forty were AFP positive and 8 negative. The patients were randomized with therapy group consisting of 26 cases and the control group 22 cases. The therapy group received AHCS 4 weeks following TACE treatment. Reexamination included pathology, tumor markers, T-lymphocyte subgroup levels and computed tomography or MRI. The necrosis rate of the tumor load was calculated by Cavalieri's theory. EORTC QLQ-C30 was used in quality of life evaluation. RESULTS The average tumor-load reduction rate (necrosis rate) was 8.07% after TACE, and 28.65% after AHCS. Coagulation necrosis was produced in the target area. The tumor markers deceased significantly after AHCS. Tumor-load reduction after AHCS was more significant than after TACE. Suppression of cellular immunity after TACE was significant. In contrast, CD3^+, CD4^+ and NK increased after AHCS and an abnormal T-lymphocyte distribution was corrected. Quality of life after AHCS increased according to the EORTC QLQ-C30 evaluation. No severe complications occurred. CONCLUSION Percutaneous AHCS cryoablation after TACE reduced the tumor load in the short term. At the same time, cellular immune function was increased after AHCS. TACE was critical in increasing the therapeutic efficacy of AHCS because of its embolisation of blood vessels preventing a Flow Effect. Reduction of the tumor load in the short term may conduce to increase cellular immunity. Percutaneous AHCS cryoablation combined with TACE can reduce the tumor load, improve cellular immunity and increase quality of life of HCC patients. This type of therapy deserves to be studied further research.
文摘Background: The efficacy and safety of dexmedetomidine during the anesthesia induction of intracranial tumor patients remain unknown. We wondered whether loading infusion of dexmedetomidine 1 μg/kg over 10 min to intracranial tumor patients was as efficient and safe as to those abdominal disease patients. Methods: Patients aged 18-60 years, male or female, ASA I or II, scheduled for intracranial tumor resection (Group N, n = 30) or abdominal operation (Group A, n = 30) were enrolled in this observational trial. Dexmedetomidine was administrated with a loading dosage of 1 μg/kg over 10 min following with continuous infusing of 0.5 μg/kg/h. Fentanyl, propofol and rocuronium were sequentially administered for anesthesia induction. Heart rate (HR), blood pressure (BP), pulse oxygen saturation (SpO2), bispectral index (BIS) and other adverse effects were recorded from the beginning of loading infusion of dexmedetomidine to the end of endotracheal intubation. Results: Among with loading infusion, HR and BIS value decreased and were significantly lower at the end of infusion than before infusion (P P > 0.05). One patient of Group N dropped out from this trial because of a serious headache. 14 of 29 patients during dexmedetomidine loading infusion suffered hypoxemia (SpO2 P Conclusion: A loading dosage of 1 μg/kg of dexmedetomidine was not suitable for the anesthesia induction of intracranial tumor patients as compared to patients undergoing abdominal operation.
文摘Paclitaxel(PTX) is an important cancer chemotherapeutic drug. To ameliorate the disadvantages of paclitaxel, this study designed liposomes to load paclitaxel, adding the acidsensitive material cholesteryl hemisuccinate(CHEMS) to increase the accumulation of the drug in the tumor site. To begin, we used a high-performance liquid chromatography(HPLC)method to determine the content of PTX and the encapsulation efficiency. Then, we prepared paclitaxel-loaded acid-sensitive liposomes(PTX ASLs) by a thin-film dispersion method.We investigated the physical and chemical properties of the liposomes. The particle size was 210.8 nm, the polydispersity index(PDI) was 0.182 and the ζ-potential was-31.2 mV.The liposome shape was observed by transmission electron microscopy(TEM), and the results showed that the liposomes were round with a homogenous size distribution. The release characteristics of the liposomes in vitro were studied via a dynamic dialysis method. The results showed that the prepared liposomes had acid sensitivity and sustained release properties. An in vitro cellular uptake assay of MCF-7 cells showed that the cell uptake of coumarin-6-loaded acid-sensitive liposomes was significantly higher than that of free coumarin-6. The cytotoxicity of the PTX ASLs was significantly higher than that of paclitaxel. In conclusion,these results showed that the prepared liposomes had clear acid-sensitive release characteristics and a higher cell uptake rate and cytotoxicity than free PTX. The system is very suitable for targeted cancer therapy with paclitaxel.