Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet...Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet in many cancer tissues,it is not expressed because of the methylation of its promoter.Additionally,the expression of TIG1 in cancer cells inhibits their growth and invasion,suggesting that TIG1 acts as a tumor suppressor gene.However,in some cancers,poor prognosis is associated with TIG1 expression,indicating its protumor growth characteristics,especially in promoting the invasion of inflammatory breast cancer cells.This review comprehensively summarizes the roles of the TIG1 gene in cancer development and details the mechanisms through which TIG1 regulates cancer development,with the aim of understanding its various roles in cancer development.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is a major cause of cancer mortality worldwide,and metastasis is the main cause of early recurrence and poor prognosis.However,the mechanism of metastasis remains poorly underst...BACKGROUND Hepatocellular carcinoma(HCC)is a major cause of cancer mortality worldwide,and metastasis is the main cause of early recurrence and poor prognosis.However,the mechanism of metastasis remains poorly understood.AIM To determine the possible mechanism affecting HCC metastasis and provide a possible theoretical basis for HCC treatment.METHODS The candidate molecule lecithin-cholesterol acyltransferase(LCAT)was screened by gene microarray and bioinformatics analysis.The expression levels of LCAT in clinical cohort samples was detected by quantitative realtime polymerase chain reaction and western blotting.The proliferation,migration,invasion and tumor-forming ability were measured by Cell Counting Kit-8,Transwell cell migration,invasion,and clonal formation assays,respectively.Tumor formation was detected in nude mice after LCAT gene knockdown or overexpression.The immunohistochemistry for Ki67,E-cadherin,N-cadherin,matrix metalloproteinase 9 and vascular endothelial growth factor were performed in liver tissues to assess the effect of LCAT on HCC.Gene set enrichment analysis(GSEA)on various gene signatures were analyzed with GSEA version 3.0.Three machine-learning algorithms(random forest,support vector machine,and logistic regression)were applied to predict HCC metastasis in The Cancer Genome Atlas and GEO databases.RESULTS LCAT was identified as a novel gene relating to HCC metastasis by using gene microarray in HCC tissues.LCAT was significantly downregulated in HCC tissues,which is correlated with recurrence,metastasis and poor outcome of HCC patients.Functional analysis indicated that LCAT inhibited HCC cell proliferation,migration and invasion both in vitro and in vivo.Clinicopathological data showed that LCAT was negatively associated with HCC size and metastasis(HCC size≤3 cm vs 3-9 cm,P<0.001;3-9 cm vs>9 cm,P<0.01;metastatic-free HCC vs extrahepatic metastatic HCC,P<0.05).LCAT suppressed the growth,migration and invasion of HCC cell lines via PI3K/AKT/mTOR signaling.Our results indicated that the logistic regression model based on LCAT,TNM stage and the serum level of α-fetoprotein in HCC patients could effectively predict high metastatic risk HCC patients.CONCLUSION LCAT is downregulated at translational and protein levels in HCC and might inhibit tumor metastasis via attenuating PI3K/AKT/mTOR signaling.LCAT is a prognostic marker and potential therapeutic target for HCC.展开更多
This study was designed to investigate the roles of RASAL2 in cervical cancer(CC).Methods:Fifty-four CC tissues and 33 adjacent tissues were obtained from CC patients admitted to our hospital between March 2012 and Ju...This study was designed to investigate the roles of RASAL2 in cervical cancer(CC).Methods:Fifty-four CC tissues and 33 adjacent tissues were obtained from CC patients admitted to our hospital between March 2012 and June 2014.Real-time polymerase chain reaction and western blotting were performed to analyze the expression of RASAL2 mRNA and protein in these tissues,CC cell lines,and normal cervical cells.Over-expression and silencing of RASAL2 were induced after transfection,and the migration,invasion,and proliferation of the CC cell lines were examined.Results:RASAL2 mRNA and protein expressions were significantly down-regulated in CC tissues and cell lines than in adjacent tissues and normal cervical cells,respectively.While low RASAL2 expression correlated with advanced stage and metastasis of CC,its over-expression significantly inhibited proliferation and metastasis of CC cells and induced apoptosis.Under in vitro conditions,silencing of RASAL2 expression could significantly increase the proliferation,invasion,and migration of CC cells.Conclusion:RASAL2 functioned as a tumor suppressor in CC,and was down-regulated in CC tissue samples and cell lines.展开更多
A gene homologous to the human Putative tumor suppressor gone QM, designated OSQM1, was isolated from rice (Oryza sativa L.) genomic DNA library using through homology screening. It contained 4 exons and 3 introns, en...A gene homologous to the human Putative tumor suppressor gone QM, designated OSQM1, was isolated from rice (Oryza sativa L.) genomic DNA library using through homology screening. It contained 4 exons and 3 introns, encoding a protein of 219 amino acids with 46 basic amino acids, leading to a high isoelectric point of 11.02. Homology search showed that this gene existed in eukaryotes and highly conserved throughout eukaryotes, suggesting an essential role of this gene. Northern Not analysis showed that it was expressed in various rice organs, but at lower level in developing flower and callus tissue than in other vegetative organs. Its expression levels in roots and leaves were influenced by different environmental factors.展开更多
AIM: To evaluate the genetic and epigenetic inactivation mechanism of the RASSF1A tumor suppressor gene at 3p21.3 in extrahepatic cholangiocarcinoma. METHODS: RT-PCR was used to investigate the transcriptional express...AIM: To evaluate the genetic and epigenetic inactivation mechanism of the RASSF1A tumor suppressor gene at 3p21.3 in extrahepatic cholangiocarcinoma. METHODS: RT-PCR was used to investigate the transcriptional expressing and re-expression of RASSFIA. RASSFIA mutation was analyzed with SSCP and selective sequencing. PCR was performed to detect the loss of heterozygosity (LOH) at the region of chromosome 3p21.3. Genomic DNA were modificated bisulfite and the frequency of methylation of CpG islands in RASSFIA promoter were evaluated by methylation specific PCR (MS-PCR). RESULTS: In all 48 samples and one cell lines of extrahepatic cholangiocarcinoma, the RASSFIA mutation is rare (6.12%, 3/49), 33 samples (68.75%) and QBC-939 cell lines (X2= 14.270, P= 0.001<0.01) showed RASSFIA express inactivation with LOH at microsatellite loci D3S4604. Among these 33 samples and QBC-939, 28 of 33 (84.85%) tumor samples and 1 cell lines were methylated for majority of 16 CpGs, the average frequency is 73.42%. CONCLUSION: The data we present suggest that RASSFIA which we have been searching for at 3p21.3 may be one of the key tumor suppressor gene and play an important role in the pathogenesis of extrahepatic cholangiocarcinoma, and the promoter methylation and allelic loss are the major mechanism for inactivation of RASSFIA.展开更多
A few signaling pathways are driving the growth of hepatocellular carcinoma.Each of these pathways possesses negative regulators.These enzymes,which normally suppress unchecked cell proliferation,are circumvented in t...A few signaling pathways are driving the growth of hepatocellular carcinoma.Each of these pathways possesses negative regulators.These enzymes,which normally suppress unchecked cell proliferation,are circumvented in the oncogenic process,either the overactivity of oncogenes is sufficient to annihilate the activity of tumor suppressors or tumor suppressors have been rendered ineffective.The loss of several key tumor suppressors has been described in hepatocellular carcinoma.Here,we systematically review the evidence implicating tumor suppressors in the development of hepatocellular carcinoma.展开更多
Insulin-like growth factor binding-protein-7 (IGFBP7) was obtained from our previous colonic adenocarcinoma (CRC) and normal mucosa suppression subtraction hybridization (SSH) cDNA libraries. By RT-PCR and immun...Insulin-like growth factor binding-protein-7 (IGFBP7) was obtained from our previous colonic adenocarcinoma (CRC) and normal mucosa suppression subtraction hybridization (SSH) cDNA libraries. By RT-PCR and immunohistochemistry, we found that IGFBP7 was overexpressed in CRC tissue compared to normal tissue. However, our in vitro experiments performed in 10 CRC cell lines showed that IGFBP7 expressed only in SW480 and Caco2 cell lines, which implied an underlying reversible regulatory mechanism. Using methylation-specific PCR (MSP) and bisulfite sodium PCR (BSP), we found that its expression was associated with DNA hypomethylation of exonl. This was further supported by the in vitro study which showed restored IGFBP7 expression after demethylation agent 5-aza-2'-deoxycytidine treatment. Correlation analysis between IGFBP7 expression and prognosis indicated that overexpression of IGFBP7 in CRC tissue correlated with favourable survival. Investigation of the functional role of IGFBP7 through transfection studies showed that IGFBP7 protein could inhibit growth rate, decrease colony formation activity, and induce apoptosis in RKO and SW620 cells, suggesting it a potential tumor suppressor protein in colorectal carcinogenesis. In conclusion, our study clearly demonstrated that IGFBP7 plays a potential tumor suppressor role against colorectal carcinogenesis and its expression is associated with DNA hypomethylation of exon 1.展开更多
The tumor suppressor PTEN controls a variety of biological processes including cell proliferation, growth, migration, and death. As a master cellular regulator, PTEN itself is also subjected to deliberated regulation ...The tumor suppressor PTEN controls a variety of biological processes including cell proliferation, growth, migration, and death. As a master cellular regulator, PTEN itself is also subjected to deliberated regulation to ensure its proper function. Defects in PTEN regulation have a profound impact on carcinogenesis. In this review, we briefly discuss recent advances concerning PTEN regulation and how such knowledge facilitates our understanding and further exploration of PTEN biology. The carboxyl-tail of PTEN, which appears to be associated with multiple types of posttranslational regulation, will be under detailed scrutiny. Further, a comparative analysis of PTEN and p53 suggests while p53 needs to be activated to suppress tumorigenesis (a dormant gatekeeper), PTEN is probably a constitutive surveillant against cancer development, thus a default gatekeeper.展开更多
AIM To explore the effect of miR-382 on esophageal squamous cell carcinoma (ESCC) in vitro and its possible molecular mechanism. METHODS Eca 109 cells derived from human ESCC and Het-1A cells derived from human normal...AIM To explore the effect of miR-382 on esophageal squamous cell carcinoma (ESCC) in vitro and its possible molecular mechanism. METHODS Eca 109 cells derived from human ESCC and Het-1A cells derived from human normal esophageal epithelium were used. Lentivirus-mediated miR-382 was overexpressed in Eca109 cells. The effect of miR-382 on cell proliferation was evaluated by MTT and colony formation assay. For cell cycle analysis, cells were fixed and stained for 30 min with propidium iodide (PI) staining buffer containing 10 mg/mL PI and 100 mg/mL RNase A, and analyzed by BD FACSCalibur (TM) flow cytometer. For cell apoptosis assay, cells were stained with an Annexin V-FITC/PI Apoptosis Detection Kit according to the manufacturer's instructions and analyzed by a dual-laser flow cytometer. Cell invasion and migration abilities were determined through use of transwell chambers, non-coated or pre-coated with matrigel. Levels of proteins related to cell growth and migration were examined by western blotting. RESULTS Endogenous miR-382 was down-regulated in Eca109 cells compared with Het-1A. Introduction of miR-382 not only significantly inhibited proliferation and colony formation, but also arrested cell cycle at the G2/M phase, as well as promoted apoptosis and autophagy in Eca109 cells. Migration, invasion and epithelial-mesenchymal transition of Eca109 cells were suppressed by overexpressing miR-382. Western blotting results showed that miR-382 inhibited the phosphorylation of mTOR and 4E-BP1. CONCLUSION miR-382 functions as a tumor suppressor against ESCC development and metastasis, and could be considered as a potential drug source for the treatment of ESCC patients.展开更多
Background and aim: The Krueppel-like transcription factor KLF6 is a novel tumor-suppressor gene. It was inactivated in human prostate cancer and other tumors tissue, as the result of frequent mutation and loss of he...Background and aim: The Krueppel-like transcription factor KLF6 is a novel tumor-suppressor gene. It was inactivated in human prostate cancer and other tumors tissue, as the result of frequent mutation and loss of heterozygosity (LOH). However, there is no data reporting the levels of KLF6 both mRNA and protein in hepatocellular carcinomas (HCCs). We therefore detected mutations and expression of KLF6 in HCC tissues and further observed the effect of it on cell growth in HCC cell lines. Methods: We analyzed the exon-2 ofKLF6 gene by direct DNA sequencing, and detected the expression of KLF6 by RT-PCR and Western blot in 23 HCC tissues and corresponding nontumorous tissues. Loss of growth suppressive effect of the HCC-derived KLF6 mutant was characterized by in vitro growth curves plotted, flow cytometry and Western blotting. Results: KLF6 mutations were found in 2 of 23 HCC tissues and one of mutations was missense. Expression ofKLF6 mRNA or protein was down-regulated in 8 (34.7%) or 9 (39.1%) of 23 HCC tissues. Wild-type KLF6 (wtKLF6) inhibited cellular proliferation and prolonged G1 -S transition by inducing the expression of p21WAF 1 following stable transfection into cultured HepG2 cells, but tumor-derived KLF6 mutant (mKLF6) had no effects. Conclusion: Our findings suggest that KLF6 may be involved in pathogenesis of HCC.展开更多
AIM:To identify the novel methylation-silenced gene pentraxin 3(PTX3) in esophageal squamous cell carcinoma(ESCC).METHODS:PTX3 mRNA expression was examined in six human ESCC cell lines,one human immortalized normal es...AIM:To identify the novel methylation-silenced gene pentraxin 3(PTX3) in esophageal squamous cell carcinoma(ESCC).METHODS:PTX3 mRNA expression was examined in six human ESCC cell lines,one human immortalized normal esophageal epithelial cell line,primary ESCC tumor tissue,and paired adjacent nontumor tissue using reverse transcription polymerase chain reaction(RTPCR).Semi-quantitative immunohistochemistry was used to examine cellular localisation and protein levels.Methylation specific PCR and bisulphite genomic sequencing were employed to investigate the methylation of the candidate gene.RESULTS:In the majority of ESCC cell lines,we found that PTX3 expression was down-regulated due to gene promoter hypermethylation,which was further confirmed by bisulphite genomic sequencing.Demethylation treatment with 5-aza-2'-deoxycytidine restored PTX3 mRNA expression in ESCC cell lines.Methylation was more common in tumor tissues(85%) than in adjacent nontumor tissues(25%)(P < 0.01).CONCLUSION:PTX3 is down-regulated through promoter hypermethylation in ESCC,and could potentially serve as a biomarker of ESCC.展开更多
Objective: Oncogenes have been shown to be drivers of non-small cell lung cancer(NSCLC), yet the tumor suppressing genes involved in lung carcinogenesis remain to be systematically investigated. This study aimed to id...Objective: Oncogenes have been shown to be drivers of non-small cell lung cancer(NSCLC), yet the tumor suppressing genes involved in lung carcinogenesis remain to be systematically investigated. This study aimed to identify tumor suppressing ubiquitin pathway genes(UPGs) that were critical to lung tumorigenesis.Methods: The 696 UPGs were silenced by an siRNA screening in NSCLC cells;the potential tumor suppressing UPGs were analyzed, and their clinical significance was investigated.Results: We reported that silencing of 11 UPGs resulted in enhanced proliferation of NSCLC cells, and four UPGs(UBL3, TRIM22, UBE2 G2, and MARCH1) were significantly downregulated in tumor samples compared to that in normal lung tissues and their expression levels were positively associated with overall survival(OS) of NSCLC patients. Among these genes, UBL3 was the most significant one. UBL3 expression was decreased in tumor samples compared to that in paired normal lung tissues in 59/86(68.6%) NSCLCs, was correlated with TNM stage and sex of NSCLC patients, and was significantly higher in non-smoking patients than in smoking patients. Silencing UBL3 accelerated cell proliferation and ectopic expression of UBL3 suppressed NSCLC in vitro and in vivo.Conclusions: These results showed that UBL3 represented a tumor suppressor in NSCLC and may have potential for use in therapeutics and for the prediction of clinical outcome of patients.展开更多
Objective: To investigate whether deletion of chromosome 3 is involved in the carcinogenesis of primary glioblastoma multiforme (GBM) and to localize the possible common deletion region in the aforementioned chromosom...Objective: To investigate whether deletion of chromosome 3 is involved in the carcinogenesis of primary glioblastoma multiforme (GBM) and to localize the possible common deletion region in the aforementioned chromosome. Methods: PCR based microsatellite polymorphism analyses were performed to detect loss of heterozygosity (LOH). Twenty-three loci on chromosome 3 were examined in 20 cases of GBM. Fluorescence-labeled primers and Perkin Elmer 377 DNA Sequencer were applied. Results: 50% informative cases of GBM displayed LOH on chromosome 3. 50% of informative cases displayed LOH on 3q and 35% on 3p. 25.6% of informative loci showed LOH in our series, in which frequent LOH were observed in the chromosomal region from loci D3S1614 (42.9%) to D3S1565 (35.3%) on 3q24–27 and at loci D3S1569 (35.3%) on 3q22–23 and D3S1289 (33.3%) on 3p14.1–14.3. Conclusion: Loss of genetic material on chromosome 3 may play an important part in the tumorigenesis of GBM. The chromosomal regions from loci D3S1614 to D3S1565 on 3q24–27 and at loci D3S1569 on 3q22–23 and D3S1289 on 3p14.1–14.3 are potential sites for novel tumor suppressor genes associated with GBM.展开更多
Objective: To investigate whether deletion of chromosome 17 is involved in the carcinogenesis of primary glioblastoma multiforme and to localize the possible common deletion region in the aforementioned chromosome. Me...Objective: To investigate whether deletion of chromosome 17 is involved in the carcinogenesis of primary glioblastoma multiforme and to localize the possible common deletion region in the aforementioned chromosome. Methods: Polymerase chain reaction-based microsatellite analysis was used to assess loss of heterozygosity (LOH) on chromosome 17 in 20 primary glioblastoma multiforme (GBM). Fifteen fluorescent dye-labeled polymorphic markers were used. Results: Thirteen of twenty (65%) GBM displayed LOH on at least one marker of chromosome 17p. Two tumors showed either LOH or non-informativeness on all markers tested. The most frequent LOH was observed at loci including D17s799 (53.3%), D17s1852 (53.8%), D17s938 (63.20/o), D17s831 (55.6%). The loci D17s831 (on 17p13) and D17s799–D17s1852 (17p11.2–p12) are distal and proximal to p53 respectively. The frequencies of LOH at all loci examined on chromosome 17q were relatively low (<30%). None of informative loci exhibited microsatellite instability in this study. Conclusion: Loss of genetic material on chromosome 17p may play an important role in the pathogenesis of GBM. Besides the well-known TSG p53 on 17p, other unknown TSCs associated with GBM may be present on the chromosomal regions 17p13 and 17p11.2–p12, which are distal and proximal to p53 respectively.展开更多
AIM: To study the candidate tumor suppressor genes (TSG) on chromosome 4p by detecting the high frequency of loss of heterozygosity (LOH) in sporadic colorectal carcinoma in Chinese patients.METHODS: Seven fluorescent...AIM: To study the candidate tumor suppressor genes (TSG) on chromosome 4p by detecting the high frequency of loss of heterozygosity (LOH) in sporadic colorectal carcinoma in Chinese patients.METHODS: Seven fluorescent labeled polymorphic microsatellite markers were analyzed in 83 cases of colorectal carcinoma and matched normal tissue DNA by PCR. PCR products were eletrophoresed on an ABI 377 DNA sequencer. Genescan 3.7 and Genotype 3.7 software were used for LOH scanning and analysis. The same procedure was performed by the other six microsatellite markers spanning D4S3013 locus to make further detailed deletion mapping. Comparison between LOH frequency and clinicopathological factors was performed by χ2 test.RESULTS: Data were collected from all informative loci. The average LOH frequency on 4p was 24.25%, and 42.3% and 35.62% on D4S405 and D4S3013 locus, respectively. Adjacent markers of D4S3013 displayed a low LOH frequency (< 30%) by detailed deletion mapping. Significant opposite difference was observed between LOH frequency and tumor diameter on D4S412 and D4S1546 locus (0% vs 16.67%, P = 0.041; 54.55% vs 11.11%, P = 0.034, respectively). On D4S403 locus, LOH was significantly associated with tumor gross pattern (11.11%, 0, 33.33%, P = 0.030). No relationship was detected on other loci compared with clinicopathologial features.CONCLUSION: By deletion mapping, two obvious high frequency LOH regions spanning D4S3013 (4p15.2) and D4S405 (4p14) locus are detected. Candidate TSG, which is involved in carcinogenesis and progression of sporadic colorectal carcinoma on chromosome 4p, may be located between D4S3017 and D4S2933 (about 1.7 cm).展开更多
MicroRNA-153(miR-153),belongs toa dass of small non-coding RNA.It is a aritical regulator of gene expression at the post-transcriptional lewel which interacts with the functional mRNA at 3UTR rgion and suppresses the ...MicroRNA-153(miR-153),belongs toa dass of small non-coding RNA.It is a aritical regulator of gene expression at the post-transcriptional lewel which interacts with the functional mRNA at 3UTR rgion and suppresses the expression of the mRNA.More recently,it has become apparent that dhanges in the miR-153 axpression lead to invasion,metastasis,angiogenesis and various types of tumor progression.This review summarizes the connection between dysrgulation of miR-153 and various typas of cancer progression.miR-153 regulates various signaling pathways to inhibit the proliferation and induce apoptosis in the ancer cell and also show synergistic activity with anticancer drugs.In addition to this,the oncogenic bchavior of miR-153 and their use as a potential biomarker in cancer was also reviewed.展开更多
Pervious studies demonstrate that lats, also known as warts, is a tumor suppressor gene in Drosophila . Mutations of lats lead to an increase in cell number and organ size in Drosophila, indicating lats may be involve...Pervious studies demonstrate that lats, also known as warts, is a tumor suppressor gene in Drosophila . Mutations of lats lead to an increase in cell number and organ size in Drosophila, indicating lats may be involved in organ size control. Furthermore, the high conservation of sequence and tumor suppression function of lats between Drosophila and human suggests that it may be also involved in organ size control of higher animals . So here we isolated the bovine homologue of Drosophila lats. Sequence analysis indicates the bovine LATS1 to be very similar to other lats proteins.展开更多
Objective: The aim of this study was to establish the osteosarcoma cell sublines which stably expressing tumor suppressor in lung cancer-1 (TSLC1) gene and evaluate its effect on growth inhibition of human osteosar...Objective: The aim of this study was to establish the osteosarcoma cell sublines which stably expressing tumor suppressor in lung cancer-1 (TSLC1) gene and evaluate its effect on growth inhibition of human osteosarcoma cell line MG63. Methods: The recombinant plasmid pCI-TSLC1 was stably transfected into MG63 cells with Lipofectamine 2000. The posi- tive clones were developed by selection by G418. Biological characteristics of one of the 6 cell lines which highly expressing TSLC1, namely, the M8T were studied. Cell growth was analyzed with MTT assay. 2 x 10^7cells suspended in 0.2 mL phosphate buffered saline (PBS) were injected into the two flanks of 5-6-week-old female BALB/C nu/nu athymic nude mice. The volumes of subcutaneous of tumor growth were evaluated and calculated by the formula V= Length x Width x Height x 0.5 once a week. Results: The MST cell subline which stably expressing TSLC1 was characterized by Western blot. The genetic stability and purity of M8T cells were stable. TSLC1 significantly suppressed the growth of M8T cells in vitro. Moreover, the tumorigenicity of MST cells was suppressed in vivo. Conclusion: The osteosarcoma cell sublines MST which stably expressing TSLC1 had been successfully established. The ability of growth and metastasis of MST was significantly suppressed both in vitro and in vivo.展开更多
Stomach adenocarcinoma (STAD) is the fifth most prevalent cancer and the third leading cause of cancer-related death in the world and is more common in Asia than in most Western countries. There is an urgent need to i...Stomach adenocarcinoma (STAD) is the fifth most prevalent cancer and the third leading cause of cancer-related death in the world and is more common in Asia than in most Western countries. There is an urgent need to identify potential novel oncogenes and tumor suppressor genes, and biomarkers for STAD. 6652 differentially expressed genes were identified between STAD and normal samples based on the transcriptome data analysis of the TCGA and GEO databases. 13 key modules were identified in STAD by WGCNA analysis. 293 potential STAD associated genes were identified from intersection by Venn Diagram. The 293 intersected genes were enriched in cell cortex and infection by GO and KEGG analysis. 10 hub genes were identified from PPI and Cytoscape analyses of the intersected genes. KLF4/CGN low and SHH/LIF high expression were associated with short overall survival of Asian STAD patients. Bioinformatics analysis revealed potential novel tumor suppressors (KLF4/CGN), oncogenes (SHH/LIF) and biomarkers for diagnosis, therapy and prognosis of STAD, specifically for Asian patients.展开更多
Esophageal squamous cell carcinoma(ESCC) is a prevalent and fatal cancer in China and other Asian countries.Epigenetic silencing of key tumor suppressor genes(TSGs) is critical to ESCC initiation and progression.Recen...Esophageal squamous cell carcinoma(ESCC) is a prevalent and fatal cancer in China and other Asian countries.Epigenetic silencing of key tumor suppressor genes(TSGs) is critical to ESCC initiation and progression.Recently,many novel TSGs silenced by promoter methylation have been identified in ESCC,and these genes further serve as potential tumor markers for high-risk group stratification,early detection,and prognosis prediction.This review summarizes recent discoveries on aberrant promoter methylation of TSGs in ESCC,providing better understanding of the role of disrupted epigenetic regulation in tumorigenesis and insight into diagnostic and prognostic biomarkers for this malignancy.展开更多
基金supported by the Taipei Tzu Chi Hospital through grants from the Buddhist Tzu Chi Medical Foundation under the Numbers TCRD-TPE-111-23(2/3)and TCRD-TPE-113-20,Taipei,Taiwan.
文摘Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet in many cancer tissues,it is not expressed because of the methylation of its promoter.Additionally,the expression of TIG1 in cancer cells inhibits their growth and invasion,suggesting that TIG1 acts as a tumor suppressor gene.However,in some cancers,poor prognosis is associated with TIG1 expression,indicating its protumor growth characteristics,especially in promoting the invasion of inflammatory breast cancer cells.This review comprehensively summarizes the roles of the TIG1 gene in cancer development and details the mechanisms through which TIG1 regulates cancer development,with the aim of understanding its various roles in cancer development.
基金Supported by the National Natural Science Foundation of China,No.92159305National Key R&D Program of China,No.2023YFC2308104.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is a major cause of cancer mortality worldwide,and metastasis is the main cause of early recurrence and poor prognosis.However,the mechanism of metastasis remains poorly understood.AIM To determine the possible mechanism affecting HCC metastasis and provide a possible theoretical basis for HCC treatment.METHODS The candidate molecule lecithin-cholesterol acyltransferase(LCAT)was screened by gene microarray and bioinformatics analysis.The expression levels of LCAT in clinical cohort samples was detected by quantitative realtime polymerase chain reaction and western blotting.The proliferation,migration,invasion and tumor-forming ability were measured by Cell Counting Kit-8,Transwell cell migration,invasion,and clonal formation assays,respectively.Tumor formation was detected in nude mice after LCAT gene knockdown or overexpression.The immunohistochemistry for Ki67,E-cadherin,N-cadherin,matrix metalloproteinase 9 and vascular endothelial growth factor were performed in liver tissues to assess the effect of LCAT on HCC.Gene set enrichment analysis(GSEA)on various gene signatures were analyzed with GSEA version 3.0.Three machine-learning algorithms(random forest,support vector machine,and logistic regression)were applied to predict HCC metastasis in The Cancer Genome Atlas and GEO databases.RESULTS LCAT was identified as a novel gene relating to HCC metastasis by using gene microarray in HCC tissues.LCAT was significantly downregulated in HCC tissues,which is correlated with recurrence,metastasis and poor outcome of HCC patients.Functional analysis indicated that LCAT inhibited HCC cell proliferation,migration and invasion both in vitro and in vivo.Clinicopathological data showed that LCAT was negatively associated with HCC size and metastasis(HCC size≤3 cm vs 3-9 cm,P<0.001;3-9 cm vs>9 cm,P<0.01;metastatic-free HCC vs extrahepatic metastatic HCC,P<0.05).LCAT suppressed the growth,migration and invasion of HCC cell lines via PI3K/AKT/mTOR signaling.Our results indicated that the logistic regression model based on LCAT,TNM stage and the serum level of α-fetoprotein in HCC patients could effectively predict high metastatic risk HCC patients.CONCLUSION LCAT is downregulated at translational and protein levels in HCC and might inhibit tumor metastasis via attenuating PI3K/AKT/mTOR signaling.LCAT is a prognostic marker and potential therapeutic target for HCC.
基金supported by the National Natural Science Foundation of China(Grant No.81572559)the Shandong Key Research and Development Plan(Grant No.2017CXGC1210).
文摘This study was designed to investigate the roles of RASAL2 in cervical cancer(CC).Methods:Fifty-four CC tissues and 33 adjacent tissues were obtained from CC patients admitted to our hospital between March 2012 and June 2014.Real-time polymerase chain reaction and western blotting were performed to analyze the expression of RASAL2 mRNA and protein in these tissues,CC cell lines,and normal cervical cells.Over-expression and silencing of RASAL2 were induced after transfection,and the migration,invasion,and proliferation of the CC cell lines were examined.Results:RASAL2 mRNA and protein expressions were significantly down-regulated in CC tissues and cell lines than in adjacent tissues and normal cervical cells,respectively.While low RASAL2 expression correlated with advanced stage and metastasis of CC,its over-expression significantly inhibited proliferation and metastasis of CC cells and induced apoptosis.Under in vitro conditions,silencing of RASAL2 expression could significantly increase the proliferation,invasion,and migration of CC cells.Conclusion:RASAL2 functioned as a tumor suppressor in CC,and was down-regulated in CC tissue samples and cell lines.
文摘A gene homologous to the human Putative tumor suppressor gone QM, designated OSQM1, was isolated from rice (Oryza sativa L.) genomic DNA library using through homology screening. It contained 4 exons and 3 introns, encoding a protein of 219 amino acids with 46 basic amino acids, leading to a high isoelectric point of 11.02. Homology search showed that this gene existed in eukaryotes and highly conserved throughout eukaryotes, suggesting an essential role of this gene. Northern Not analysis showed that it was expressed in various rice organs, but at lower level in developing flower and callus tissue than in other vegetative organs. Its expression levels in roots and leaves were influenced by different environmental factors.
基金Supported by the National High Technology Research and Development Program of China (863 Program), No. 2002AA214061
文摘AIM: To evaluate the genetic and epigenetic inactivation mechanism of the RASSF1A tumor suppressor gene at 3p21.3 in extrahepatic cholangiocarcinoma. METHODS: RT-PCR was used to investigate the transcriptional expressing and re-expression of RASSFIA. RASSFIA mutation was analyzed with SSCP and selective sequencing. PCR was performed to detect the loss of heterozygosity (LOH) at the region of chromosome 3p21.3. Genomic DNA were modificated bisulfite and the frequency of methylation of CpG islands in RASSFIA promoter were evaluated by methylation specific PCR (MS-PCR). RESULTS: In all 48 samples and one cell lines of extrahepatic cholangiocarcinoma, the RASSFIA mutation is rare (6.12%, 3/49), 33 samples (68.75%) and QBC-939 cell lines (X2= 14.270, P= 0.001<0.01) showed RASSFIA express inactivation with LOH at microsatellite loci D3S4604. Among these 33 samples and QBC-939, 28 of 33 (84.85%) tumor samples and 1 cell lines were methylated for majority of 16 CpGs, the average frequency is 73.42%. CONCLUSION: The data we present suggest that RASSFIA which we have been searching for at 3p21.3 may be one of the key tumor suppressor gene and play an important role in the pathogenesis of extrahepatic cholangiocarcinoma, and the promoter methylation and allelic loss are the major mechanism for inactivation of RASSFIA.
基金The Stiftung für die Leberkranheiten,the EASLfellowship to JM and the Swiss National Foundation grant#3100-063696 to JFD
文摘A few signaling pathways are driving the growth of hepatocellular carcinoma.Each of these pathways possesses negative regulators.These enzymes,which normally suppress unchecked cell proliferation,are circumvented in the oncogenic process,either the overactivity of oncogenes is sufficient to annihilate the activity of tumor suppressors or tumor suppressors have been rendered ineffective.The loss of several key tumor suppressors has been described in hepatocellular carcinoma.Here,we systematically review the evidence implicating tumor suppressors in the development of hepatocellular carcinoma.
基金Project (Nos. 30200333 and 30570840) supported by the NationalNatural Science Foundation of China
文摘Insulin-like growth factor binding-protein-7 (IGFBP7) was obtained from our previous colonic adenocarcinoma (CRC) and normal mucosa suppression subtraction hybridization (SSH) cDNA libraries. By RT-PCR and immunohistochemistry, we found that IGFBP7 was overexpressed in CRC tissue compared to normal tissue. However, our in vitro experiments performed in 10 CRC cell lines showed that IGFBP7 expressed only in SW480 and Caco2 cell lines, which implied an underlying reversible regulatory mechanism. Using methylation-specific PCR (MSP) and bisulfite sodium PCR (BSP), we found that its expression was associated with DNA hypomethylation of exonl. This was further supported by the in vitro study which showed restored IGFBP7 expression after demethylation agent 5-aza-2'-deoxycytidine treatment. Correlation analysis between IGFBP7 expression and prognosis indicated that overexpression of IGFBP7 in CRC tissue correlated with favourable survival. Investigation of the functional role of IGFBP7 through transfection studies showed that IGFBP7 protein could inhibit growth rate, decrease colony formation activity, and induce apoptosis in RKO and SW620 cells, suggesting it a potential tumor suppressor protein in colorectal carcinogenesis. In conclusion, our study clearly demonstrated that IGFBP7 plays a potential tumor suppressor role against colorectal carcinogenesis and its expression is associated with DNA hypomethylation of exon 1.
文摘The tumor suppressor PTEN controls a variety of biological processes including cell proliferation, growth, migration, and death. As a master cellular regulator, PTEN itself is also subjected to deliberated regulation to ensure its proper function. Defects in PTEN regulation have a profound impact on carcinogenesis. In this review, we briefly discuss recent advances concerning PTEN regulation and how such knowledge facilitates our understanding and further exploration of PTEN biology. The carboxyl-tail of PTEN, which appears to be associated with multiple types of posttranslational regulation, will be under detailed scrutiny. Further, a comparative analysis of PTEN and p53 suggests while p53 needs to be activated to suppress tumorigenesis (a dormant gatekeeper), PTEN is probably a constitutive surveillant against cancer development, thus a default gatekeeper.
基金Supported by Key Technologies R&D Program of Science and Technology Commission of Henan Province,No.152102310110 to Zhao BSKey Science and Technique Fund of Xinxiang,No.ZG15018 to Zhao BS
文摘AIM To explore the effect of miR-382 on esophageal squamous cell carcinoma (ESCC) in vitro and its possible molecular mechanism. METHODS Eca 109 cells derived from human ESCC and Het-1A cells derived from human normal esophageal epithelium were used. Lentivirus-mediated miR-382 was overexpressed in Eca109 cells. The effect of miR-382 on cell proliferation was evaluated by MTT and colony formation assay. For cell cycle analysis, cells were fixed and stained for 30 min with propidium iodide (PI) staining buffer containing 10 mg/mL PI and 100 mg/mL RNase A, and analyzed by BD FACSCalibur (TM) flow cytometer. For cell apoptosis assay, cells were stained with an Annexin V-FITC/PI Apoptosis Detection Kit according to the manufacturer's instructions and analyzed by a dual-laser flow cytometer. Cell invasion and migration abilities were determined through use of transwell chambers, non-coated or pre-coated with matrigel. Levels of proteins related to cell growth and migration were examined by western blotting. RESULTS Endogenous miR-382 was down-regulated in Eca109 cells compared with Het-1A. Introduction of miR-382 not only significantly inhibited proliferation and colony formation, but also arrested cell cycle at the G2/M phase, as well as promoted apoptosis and autophagy in Eca109 cells. Migration, invasion and epithelial-mesenchymal transition of Eca109 cells were suppressed by overexpressing miR-382. Western blotting results showed that miR-382 inhibited the phosphorylation of mTOR and 4E-BP1. CONCLUSION miR-382 functions as a tumor suppressor against ESCC development and metastasis, and could be considered as a potential drug source for the treatment of ESCC patients.
文摘Background and aim: The Krueppel-like transcription factor KLF6 is a novel tumor-suppressor gene. It was inactivated in human prostate cancer and other tumors tissue, as the result of frequent mutation and loss of heterozygosity (LOH). However, there is no data reporting the levels of KLF6 both mRNA and protein in hepatocellular carcinomas (HCCs). We therefore detected mutations and expression of KLF6 in HCC tissues and further observed the effect of it on cell growth in HCC cell lines. Methods: We analyzed the exon-2 ofKLF6 gene by direct DNA sequencing, and detected the expression of KLF6 by RT-PCR and Western blot in 23 HCC tissues and corresponding nontumorous tissues. Loss of growth suppressive effect of the HCC-derived KLF6 mutant was characterized by in vitro growth curves plotted, flow cytometry and Western blotting. Results: KLF6 mutations were found in 2 of 23 HCC tissues and one of mutations was missense. Expression ofKLF6 mRNA or protein was down-regulated in 8 (34.7%) or 9 (39.1%) of 23 HCC tissues. Wild-type KLF6 (wtKLF6) inhibited cellular proliferation and prolonged G1 -S transition by inducing the expression of p21WAF 1 following stable transfection into cultured HepG2 cells, but tumor-derived KLF6 mutant (mKLF6) had no effects. Conclusion: Our findings suggest that KLF6 may be involved in pathogenesis of HCC.
基金Supported by National High Technology Research and Development Program of China (863 Program),No. 2007AA02Z4Z4China Postdoctoral Science Foundation,No. 20090460394Beijing Municipal Natural Science Foundation,No. 7072022
文摘AIM:To identify the novel methylation-silenced gene pentraxin 3(PTX3) in esophageal squamous cell carcinoma(ESCC).METHODS:PTX3 mRNA expression was examined in six human ESCC cell lines,one human immortalized normal esophageal epithelial cell line,primary ESCC tumor tissue,and paired adjacent nontumor tissue using reverse transcription polymerase chain reaction(RTPCR).Semi-quantitative immunohistochemistry was used to examine cellular localisation and protein levels.Methylation specific PCR and bisulphite genomic sequencing were employed to investigate the methylation of the candidate gene.RESULTS:In the majority of ESCC cell lines,we found that PTX3 expression was down-regulated due to gene promoter hypermethylation,which was further confirmed by bisulphite genomic sequencing.Demethylation treatment with 5-aza-2'-deoxycytidine restored PTX3 mRNA expression in ESCC cell lines.Methylation was more common in tumor tissues(85%) than in adjacent nontumor tissues(25%)(P < 0.01).CONCLUSION:PTX3 is down-regulated through promoter hypermethylation in ESCC,and could potentially serve as a biomarker of ESCC.
基金supported by the National Key Research and Development Program of China (Grant No. 2016YFC0905501)the National Natural Science Funds for Distinguished Young Scholar (Grant No. 81425025)+3 种基金the Key Project of the National Natural Science Foundation of China (Grant No. 81830093)the CAMS Innovation Fund for Medical Sciences (Grant No. CIFMS2019-I2M-1-003)the National Natural Science Foundation of China (Grant No. 81672765 and 81802796)。
文摘Objective: Oncogenes have been shown to be drivers of non-small cell lung cancer(NSCLC), yet the tumor suppressing genes involved in lung carcinogenesis remain to be systematically investigated. This study aimed to identify tumor suppressing ubiquitin pathway genes(UPGs) that were critical to lung tumorigenesis.Methods: The 696 UPGs were silenced by an siRNA screening in NSCLC cells;the potential tumor suppressing UPGs were analyzed, and their clinical significance was investigated.Results: We reported that silencing of 11 UPGs resulted in enhanced proliferation of NSCLC cells, and four UPGs(UBL3, TRIM22, UBE2 G2, and MARCH1) were significantly downregulated in tumor samples compared to that in normal lung tissues and their expression levels were positively associated with overall survival(OS) of NSCLC patients. Among these genes, UBL3 was the most significant one. UBL3 expression was decreased in tumor samples compared to that in paired normal lung tissues in 59/86(68.6%) NSCLCs, was correlated with TNM stage and sex of NSCLC patients, and was significantly higher in non-smoking patients than in smoking patients. Silencing UBL3 accelerated cell proliferation and ectopic expression of UBL3 suppressed NSCLC in vitro and in vivo.Conclusions: These results showed that UBL3 represented a tumor suppressor in NSCLC and may have potential for use in therapeutics and for the prediction of clinical outcome of patients.
文摘Objective: To investigate whether deletion of chromosome 3 is involved in the carcinogenesis of primary glioblastoma multiforme (GBM) and to localize the possible common deletion region in the aforementioned chromosome. Methods: PCR based microsatellite polymorphism analyses were performed to detect loss of heterozygosity (LOH). Twenty-three loci on chromosome 3 were examined in 20 cases of GBM. Fluorescence-labeled primers and Perkin Elmer 377 DNA Sequencer were applied. Results: 50% informative cases of GBM displayed LOH on chromosome 3. 50% of informative cases displayed LOH on 3q and 35% on 3p. 25.6% of informative loci showed LOH in our series, in which frequent LOH were observed in the chromosomal region from loci D3S1614 (42.9%) to D3S1565 (35.3%) on 3q24–27 and at loci D3S1569 (35.3%) on 3q22–23 and D3S1289 (33.3%) on 3p14.1–14.3. Conclusion: Loss of genetic material on chromosome 3 may play an important part in the tumorigenesis of GBM. The chromosomal regions from loci D3S1614 to D3S1565 on 3q24–27 and at loci D3S1569 on 3q22–23 and D3S1289 on 3p14.1–14.3 are potential sites for novel tumor suppressor genes associated with GBM.
文摘Objective: To investigate whether deletion of chromosome 17 is involved in the carcinogenesis of primary glioblastoma multiforme and to localize the possible common deletion region in the aforementioned chromosome. Methods: Polymerase chain reaction-based microsatellite analysis was used to assess loss of heterozygosity (LOH) on chromosome 17 in 20 primary glioblastoma multiforme (GBM). Fifteen fluorescent dye-labeled polymorphic markers were used. Results: Thirteen of twenty (65%) GBM displayed LOH on at least one marker of chromosome 17p. Two tumors showed either LOH or non-informativeness on all markers tested. The most frequent LOH was observed at loci including D17s799 (53.3%), D17s1852 (53.8%), D17s938 (63.20/o), D17s831 (55.6%). The loci D17s831 (on 17p13) and D17s799–D17s1852 (17p11.2–p12) are distal and proximal to p53 respectively. The frequencies of LOH at all loci examined on chromosome 17q were relatively low (<30%). None of informative loci exhibited microsatellite instability in this study. Conclusion: Loss of genetic material on chromosome 17p may play an important role in the pathogenesis of GBM. Besides the well-known TSG p53 on 17p, other unknown TSCs associated with GBM may be present on the chromosomal regions 17p13 and 17p11.2–p12, which are distal and proximal to p53 respectively.
基金Supported by The National Natural Science Foundation of China, No. 30080016 and No. 30470977
文摘AIM: To study the candidate tumor suppressor genes (TSG) on chromosome 4p by detecting the high frequency of loss of heterozygosity (LOH) in sporadic colorectal carcinoma in Chinese patients.METHODS: Seven fluorescent labeled polymorphic microsatellite markers were analyzed in 83 cases of colorectal carcinoma and matched normal tissue DNA by PCR. PCR products were eletrophoresed on an ABI 377 DNA sequencer. Genescan 3.7 and Genotype 3.7 software were used for LOH scanning and analysis. The same procedure was performed by the other six microsatellite markers spanning D4S3013 locus to make further detailed deletion mapping. Comparison between LOH frequency and clinicopathological factors was performed by χ2 test.RESULTS: Data were collected from all informative loci. The average LOH frequency on 4p was 24.25%, and 42.3% and 35.62% on D4S405 and D4S3013 locus, respectively. Adjacent markers of D4S3013 displayed a low LOH frequency (< 30%) by detailed deletion mapping. Significant opposite difference was observed between LOH frequency and tumor diameter on D4S412 and D4S1546 locus (0% vs 16.67%, P = 0.041; 54.55% vs 11.11%, P = 0.034, respectively). On D4S403 locus, LOH was significantly associated with tumor gross pattern (11.11%, 0, 33.33%, P = 0.030). No relationship was detected on other loci compared with clinicopathologial features.CONCLUSION: By deletion mapping, two obvious high frequency LOH regions spanning D4S3013 (4p15.2) and D4S405 (4p14) locus are detected. Candidate TSG, which is involved in carcinogenesis and progression of sporadic colorectal carcinoma on chromosome 4p, may be located between D4S3017 and D4S2933 (about 1.7 cm).
文摘MicroRNA-153(miR-153),belongs toa dass of small non-coding RNA.It is a aritical regulator of gene expression at the post-transcriptional lewel which interacts with the functional mRNA at 3UTR rgion and suppresses the expression of the mRNA.More recently,it has become apparent that dhanges in the miR-153 axpression lead to invasion,metastasis,angiogenesis and various types of tumor progression.This review summarizes the connection between dysrgulation of miR-153 and various typas of cancer progression.miR-153 regulates various signaling pathways to inhibit the proliferation and induce apoptosis in the ancer cell and also show synergistic activity with anticancer drugs.In addition to this,the oncogenic bchavior of miR-153 and their use as a potential biomarker in cancer was also reviewed.
文摘Pervious studies demonstrate that lats, also known as warts, is a tumor suppressor gene in Drosophila . Mutations of lats lead to an increase in cell number and organ size in Drosophila, indicating lats may be involved in organ size control. Furthermore, the high conservation of sequence and tumor suppression function of lats between Drosophila and human suggests that it may be also involved in organ size control of higher animals . So here we isolated the bovine homologue of Drosophila lats. Sequence analysis indicates the bovine LATS1 to be very similar to other lats proteins.
基金Supported by a grant from the National Natural Science Foundation of Hubei Province (No. 2010CDB09302)
文摘Objective: The aim of this study was to establish the osteosarcoma cell sublines which stably expressing tumor suppressor in lung cancer-1 (TSLC1) gene and evaluate its effect on growth inhibition of human osteosarcoma cell line MG63. Methods: The recombinant plasmid pCI-TSLC1 was stably transfected into MG63 cells with Lipofectamine 2000. The posi- tive clones were developed by selection by G418. Biological characteristics of one of the 6 cell lines which highly expressing TSLC1, namely, the M8T were studied. Cell growth was analyzed with MTT assay. 2 x 10^7cells suspended in 0.2 mL phosphate buffered saline (PBS) were injected into the two flanks of 5-6-week-old female BALB/C nu/nu athymic nude mice. The volumes of subcutaneous of tumor growth were evaluated and calculated by the formula V= Length x Width x Height x 0.5 once a week. Results: The MST cell subline which stably expressing TSLC1 was characterized by Western blot. The genetic stability and purity of M8T cells were stable. TSLC1 significantly suppressed the growth of M8T cells in vitro. Moreover, the tumorigenicity of MST cells was suppressed in vivo. Conclusion: The osteosarcoma cell sublines MST which stably expressing TSLC1 had been successfully established. The ability of growth and metastasis of MST was significantly suppressed both in vitro and in vivo.
文摘Stomach adenocarcinoma (STAD) is the fifth most prevalent cancer and the third leading cause of cancer-related death in the world and is more common in Asia than in most Western countries. There is an urgent need to identify potential novel oncogenes and tumor suppressor genes, and biomarkers for STAD. 6652 differentially expressed genes were identified between STAD and normal samples based on the transcriptome data analysis of the TCGA and GEO databases. 13 key modules were identified in STAD by WGCNA analysis. 293 potential STAD associated genes were identified from intersection by Venn Diagram. The 293 intersected genes were enriched in cell cortex and infection by GO and KEGG analysis. 10 hub genes were identified from PPI and Cytoscape analyses of the intersected genes. KLF4/CGN low and SHH/LIF high expression were associated with short overall survival of Asian STAD patients. Bioinformatics analysis revealed potential novel tumor suppressors (KLF4/CGN), oncogenes (SHH/LIF) and biomarkers for diagnosis, therapy and prognosis of STAD, specifically for Asian patients.
基金supported by NSFC Joint Research Fund for Hong Kong and Macao Young Scholars(No.30928012)National Natural Science Foundation of China(No.81071634,81172582,and 30801344)Shenzhen Science Fund for Distinguished Young Scholars(No.JC201005270328A)
文摘Esophageal squamous cell carcinoma(ESCC) is a prevalent and fatal cancer in China and other Asian countries.Epigenetic silencing of key tumor suppressor genes(TSGs) is critical to ESCC initiation and progression.Recently,many novel TSGs silenced by promoter methylation have been identified in ESCC,and these genes further serve as potential tumor markers for high-risk group stratification,early detection,and prognosis prediction.This review summarizes recent discoveries on aberrant promoter methylation of TSGs in ESCC,providing better understanding of the role of disrupted epigenetic regulation in tumorigenesis and insight into diagnostic and prognostic biomarkers for this malignancy.