Therapeutic options for the treatment of colorectal cancer(CRC) are diverse but still not always satisfying. Recent success of immune checkpoint inhibition treatment for the subgroup of CRC patients suffering from hyp...Therapeutic options for the treatment of colorectal cancer(CRC) are diverse but still not always satisfying. Recent success of immune checkpoint inhibition treatment for the subgroup of CRC patients suffering from hypermutated tumors suggests a permanent role of immune therapy in the clinical management of CRC. Substantial improvement in treatment outcome could be achieved by development of efficient patient-individual CRC vaccination strategies. This mini-review summarizes the current knowledge on the two general classes of targets: tumor-associated antigens(TAAs) and tumorspecific antigens. TAAs like carcinoembryonic antigen and melanoma associated antigen are present in and shared by a subgroup of patients and a variety of clinical studies examined the efficacy of different TAA-derived peptide vaccines. Combinations of several TAAs as the next step and the development of personalized TAA-based peptide vaccines are discussed. Improvements of peptidebased vaccines achievable by adjuvants and immunestimulatory chemotherapeutics are highlighted. Finally, we sum up clinical studies using tumor-specific antigens-in CRC almost exclusively neoantigens-which revealed promising results; particularly no severe adverse events were reported so far. Critical progress for clinical outcomes can be expected by individualizing neoantigen-based peptide vaccines and combining them with immunestimulatory chemotherapeutics and immune checkpoint inhibitors. In light of these data and latest developments, truly personalized neoantigen-based peptide vaccines can be expected to fulfill modern precision medicine's requirements and will manifest as treatment pillar for routine clinical management of CRC.展开更多
AIM: To examine the concentration of a new antigen SC6 (SC6-Ag) recognized by monoclonal antibody (MAb)in patients with pancreatic cancer and other malignant or benign diseases and to understand whether SC6-Ag has any...AIM: To examine the concentration of a new antigen SC6 (SC6-Ag) recognized by monoclonal antibody (MAb)in patients with pancreatic cancer and other malignant or benign diseases and to understand whether SC6-Ag has any clinical significance in distinguishing pancreatic cancer from other gastrointestinal diseases.METHODS: Six hundred and ninety-five serum specimens obtained from 115 patients with pancreatic cancer, 154 patients with digestive cancer and 95patients with non-digestive cancer were used and classified in this study. Serum specimens obtained from 140 patients with benign digestive disease and 89 patients with non-benign digestive disease served as controls. Ascites was tapped from 16 pancreatic cancer patients, 19 hepatic cancer patients, 16 colonic cancer patients, 10 gastric cancer and 6 severe necrotic pancreatitis patients. The samples were quantitated by solid-phase radioimmunoassay. The cut-off values (CV)of 41, 80, and 118 U/mL were used.RESULTS: The average intra- and interassay CV detected by immunoradiometric assay of SC6-Ag was 5.4% and 8.7%, respectively. The sensitivity and specificity were 73.0% and 90.9% respectively. The levels in most malignant and benign cases were within the normal upper limit. Among the 16 pancreatic cancer cases, the concentration of SC6-Ag in ascites was over the normal range in 93.8% patients. There was no significant difference in the concentration of SC6-Ag.Decreased expression of SC6-Ag in sera was significantly related to tumor differentiation. The concentration of SC6-Ag was higher in patients before surgery than after surgery. The specificity of SC6-Ag and CA19-9 was significantly higher than that of ultrasound and computer tomography (CT) in pancreatic cancer patients. Higher positive predictive values were indicated in 92.3% SC6-Ag and 88.5% CA19-9, but lower in 73.8% ultrasound and 76.2% CT.CONCLUSION: The combined test of SC6-Ag and CA19-9 may improve the diagnostic rate of primary cancer. The detection of SC6-Ag is valuable in the diagnosis of pancreatic cancer before and after surgery.展开更多
Hepatocellular carcinoma(HCC) is one of the most common tumors worldwide. The survival rate after the onset of symptoms is generally less than one year for the late presentation of HCC, and reliable tools for early di...Hepatocellular carcinoma(HCC) is one of the most common tumors worldwide. The survival rate after the onset of symptoms is generally less than one year for the late presentation of HCC, and reliable tools for early diagnosis are lacking. Therefore, novel biomarkers for the early detection of HCC are urgently required. Recent studies show that the abnormal release of proteins by tumor cells can elicit humoral immune responses to self-antigens called tumor-associated antigens(TAAs). The corresponding autoantibodies can be detected before the clinical diagnosis of cancer. Therefore, there is growing interest in using serum autoantibodies as cancer biomarkers. In this review, we focus on the advances in research on autoantibodies against TAAs as serum biomarker for detection of HCC, the mechanism of the production of TAAs, and the association of autoantibodies with patients' clinical characteristics.展开更多
Anterior gradient-2 (AGR2) promotes tumor growth, cell migration and cellular transformation and its enhanced expression is almost completely restricted to malignant tissues, thus making AGR2 an interesting target f...Anterior gradient-2 (AGR2) promotes tumor growth, cell migration and cellular transformation and its enhanced expression is almost completely restricted to malignant tissues, thus making AGR2 an interesting target for the development of immunotherapeutic strategies. We investigated whether the AGR2 molecule comprises human leukocyte antigen (HLA)-A 0201-binding epitopes recognized by human cytotoxic T lymphocytes (CTLs), which could be targeted in dendritic cell (DC)-based cancer immunotherapy against colorectal cancer (CRC). We reviewed the sequence of AGR2 for peptides that could potentially bind to HLA-A 0201 with the aid of a computer-based program. Five candidate peptides with different binding scores were synthesized and tested. These peptides were then assessed for their immunogenicity to elicit specific immune responses mediated by CTLs in vitro by means of enzyme-linked immunospot assays and CTL assays. AGR2 was highly expressed in several CRC cell lines, including DK01, DLD1, KM 12C, HCT-8 and HT-29. DCs pulsed with AGR2-P2 (aa 11-19; LLVALSYTL) or AGR2-P4 (aa 127-135; RIMFVDPSL) generated potent CTLs that could lyse T2 cells pulsed with AGR2-P2 or AGR2-P4 and HLA-A0201+ AGR2-positive CRC cell lines in a strong dose-dependent and HLA-A 0201-restricted manner. In conclusion, these novel epitopes derived from AGR2 protein may be attractive candidates for DC-based immunotherapy for CRC.展开更多
BACKGROUND Calculus bovis(CB),used in traditional Chinese medicine,exhibits anti-tumor effects in various cancer models.It also constitutes an integral component of a compound formulation known as Pien Tze Huang,which...BACKGROUND Calculus bovis(CB),used in traditional Chinese medicine,exhibits anti-tumor effects in various cancer models.It also constitutes an integral component of a compound formulation known as Pien Tze Huang,which is indicated for the treatment of liver cancer.However,its impact on the liver cancer tumor microenvironment,particularly on tumor-associated macrophages(TAMs),is not well understood.AIM To elucidate the anti-liver cancer effect of CB by inhibiting M2-TAM polarization via Wnt/β-catenin pathway modulation.METHODS This study identified the active components of CB using UPLC-Q-TOF-MS,evaluated its anti-neoplastic effects in a nude mouse model,and elucidated the underlying mechanisms via network pharmacology,transcriptomics,and molecular docking.In vitro assays were used to investigate the effects of CB-containing serum on HepG2 cells and M2-TAMs,and Wnt pathway modulation was validated by real-time reverse transcriptase-polymerase chain reaction and Western blot analysis.RESULTS This study identified 22 active components in CB,11 of which were detected in the bloodstream.Preclinical investigations have demonstrated the ability of CB to effectively inhibit liver tumor growth.An integrated approach employing network pharmacology,transcriptomics,and molecular docking implicated the Wnt signaling pathway as a target of the antineoplastic activity of CB by suppressing M2-TAM polarization.In vitro and in vivo experiments further confirmed that CB significantly hinders M2-TAM polarization and suppresses Wnt/β-catenin pathway activation.The inhibitory effect of CB on M2-TAMs was reversed when treated with the Wnt agonist SKL2001,confirming its pathway specificity.CONCLUSION This study demonstrated that CB mediates inhibition of M2-TAM polarization through the Wnt/β-catenin pathway,contributing to the suppression of liver cancer growth.展开更多
Tumor-associated macrophages(TAMs)are emerging as targets for tumor therapy because of their primary role in promoting tumor progression.Several studies have been conducted to target TAMs by reducing their infiltratio...Tumor-associated macrophages(TAMs)are emerging as targets for tumor therapy because of their primary role in promoting tumor progression.Several studies have been conducted to target TAMs by reducing their infiltration,depleting their numbers,and reversing their phenotypes to suppress tumor progression,leading to the development of drugs in preclinical and clinical trials.However,the heterogeneous characteristics of TAMs,including their ontogenetic and functional heterogeneity,limit their targeting.Therefore,in-depth exploration of the heterogeneity of TAMs,combined with immune checkpoint therapy or other therapeutic modalities could improve the efficiency of tumor treatment.This review focuses on the heterogeneous ontogeny and function of TAMs,as well as the current development of tumor therapies targeting TAMs and combination strategies.展开更多
The relevant mechanism of tumor-associated macrophages(TAMs)in the treatment of colorectal cancer patients with immune checkpoint inhibitors(ICIs)is discussed,and the application prospects of TAMs in reversing the tre...The relevant mechanism of tumor-associated macrophages(TAMs)in the treatment of colorectal cancer patients with immune checkpoint inhibitors(ICIs)is discussed,and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies.As a class of drugs widely used in clinical tumor immunotherapy,ICIs can act on regulatory molecules on cells that play an inhibitory role-immune checkpoints-and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system.The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly.The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs.ICIs can regulate the phenotypic function of TAMs,and TAMs can also affect the tolerance of colorectal cancer to ICI therapy.TAMs play an important role in ICI resistance,and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.展开更多
This letter comments on the recently published manuscript by Huang et al in the World Journal of Gastroenterology,which focused on the immunomodulatory effect of Calculus bovis on hepatocellular carcinoma(HCC)tumor mi...This letter comments on the recently published manuscript by Huang et al in the World Journal of Gastroenterology,which focused on the immunomodulatory effect of Calculus bovis on hepatocellular carcinoma(HCC)tumor microenvironments(TME)by inhibiting M2-tumor-associated macrophage(M2-TAM)polarization via Wnt/β-catenin pathway modulation.Recent research highlights the crucial role of TAMs and their polarization towards the M2 phenotype in promoting HCC progression.Epigenetic regulation,particularly through microRNAs(miR),has emerged as a key factor in modulating immune responses and TAM polarization in the TME,influencing treatment responses and tumor progression.This editorial focuses on miR-206,which has been found to inhibit HCC cell proliferation and migration and promote apoptosis.Moreover,miR-206 enhances anti-tumor immune responses by promoting M1-polarization of Kupffer cells,facilitating CD8+T cell recruitment and suppressing liver cancer stem cell expansion.However,challenges remain in understanding the precise mechanisms regulating miR-206 and its potential as a therapeutic agent.Targeting epigenetic mechanisms and improving strategies,whether through pharmacological or genetic approaches,offer promising avenues to sensitize tumor cells to chemotherapy.Understanding the intricate interactions between cancer and non-coding RNA regulation opens new avenues for developing targeted therapies,potentially improving HCC prognosis.展开更多
In this article,we comment on the article by Huang et al.The urgent development of new therapeutic strategies targeting macrophage polarization is critical in the fight against liver cancer.Tumor-associated macrophage...In this article,we comment on the article by Huang et al.The urgent development of new therapeutic strategies targeting macrophage polarization is critical in the fight against liver cancer.Tumor-associated macrophages(TAMs),primarily of the M2 subtype,are instrumental in cellular communication within the tumor microenvironment and are influenced by various signaling pathways,including the wingless/integrated(Wnt)pathway.Activation of the Wnt signaling pathway is pivotal in promoting M2 TAMs polarization,which in turn can exacerbate hepatocarcinoma cell proliferation and migration.This manuscript emphasizes the burgeoning significance of the Wnt signaling pathway and M2 TAMs polarization in the pathogenesis and progression of liver cancer,highlighting the potential therapeutic benefits of inhibiting the Wnt pathway.Lastly,we point out areas in Huang et al’s study that require further research,providing guidance and new directions for similar studies.展开更多
BACKGROUND Colorectal cancer(CRC)is a prevalent global malignancy with complex prognostic factors.Tumor-associated macrophages(TAMs)have shown paradoxical associations with CRC survival,particularly concerning the M2 ...BACKGROUND Colorectal cancer(CRC)is a prevalent global malignancy with complex prognostic factors.Tumor-associated macrophages(TAMs)have shown paradoxical associations with CRC survival,particularly concerning the M2 subset.AIM We aimed to establish a simplified protocol for quantifying M2-like TAMs and explore their correlation with clinicopathological factors.METHODS A cross-sectional study included histopathological assessment of paraffinembedded tissue blocks obtained from 43 CRC patients.Using CD68 and CD163 immunohistochemistry,we quantified TAMs in tumor stroma and front,focusing on M2 proportion.Demographic,histopathological,and clinical parameters were collected.RESULTS TAM density was significantly higher at the tumor front,with the M2 proportion three times greater in both zones.The tumor front had a higher M2 proportion,which correlated significantly with advanced tumor stage(P=0.04),pathological nodal involvement(P=0.04),and lymphovascular invasion(LVI,P=0.01).However,no significant association was found between the M2 proportion in the tumor stroma and clinicopathological factors.CONCLUSION Our study introduces a simplified protocol for quantifying M2-like TAMs in CRC tissue samples.We demonstrated a significant correlation between an increased M2 proportion at the tumor front and advanced tumor stage,nodal involvement,and LVI.This suggests that M2-like TAMs might serve as potential indicators of disease progression in CRC,warranting further investigation and potential clinical application.展开更多
Tumor-associated macrophages(TAMs)actively interact with the tumor microenvironment(TME).The dynamic communication between TAMs and the TME is closely associated with tumorigenesis,progression,metastasis,and drug resi...Tumor-associated macrophages(TAMs)actively interact with the tumor microenvironment(TME).The dynamic communication between TAMs and the TME is closely associated with tumorigenesis,progression,metastasis,and drug resistance.With the development of single-cell sequencing,specific TAMs have been identified,and their roles in the TME were explored.With the development of an under-standing of the interactions between TAMs and the TME,targeting TAMs has become a new treatment strategy for cancer therapy be-cause of their high plasticity.In this review,we highlight strategies for remodeling TAMs based on targeting specific genes involved in reg-ulating TAM phenotypes,blocking the crosstalk between TAMs and the TME,and targeting abnormal metabolic pathways.Moreover,we provided perspectives on the translational potential of targeting TAMs for cancer treatment,which could shed light on TAM-based thera-peutic strategy in the future.展开更多
The problem of liver cancer is becoming increasingly important due to the epi-demic of metabolic diseases and persistent high alcohol consumption.This deter-mines great attention to the development and improvement of ...The problem of liver cancer is becoming increasingly important due to the epi-demic of metabolic diseases and persistent high alcohol consumption.This deter-mines great attention to the development and improvement of methods for early diagnosis and treatment of liver cancer.Huang et al presented a study in the World Journal of Gastroenterology,in which they showed that the use of the traditional Chinese medicine Calculus bovis(CB)can suppress tumor growth in mice by inhibiting M2 tumor-associated macrophages(TAM)through modulating the activity of the Wnt/β-catenin pathway.The interaction of CB components with the Wnt/β-catenin pathway,M2 TAM polarization,and tumor dynamics were studied using network pharmacology,transcriptomics,and molecular docking.It is now generally accepted that the polarization of TAM and the differentiation of the functions of M1 and M2 phagocytes are of great importance for the progression of neoplasms.It is assumed that M2 TAM promote proliferation and migration of tumor cells.Attempts to medicinally influence the Wnt/β-catenin pathway in order to modulate phagocyte polarization now belong to one of the most promising areas of immunotherapy of oncological diseases.Undoubtedly,the work of the Chinese authors deserves attention and further development.展开更多
The tumor-associated antigen Ep-CAM (17-1A antigen), defined by the murine monoclonal antibody (mAb) 17-1A, has been identified as a 42-kD glycoprotein. The mAb 17-1A has been used for immunotherapy of colorectal can...The tumor-associated antigen Ep-CAM (17-1A antigen), defined by the murine monoclonal antibody (mAb) 17-1A, has been identified as a 42-kD glycoprotein. The mAb 17-1A has been used for immunotherapy of colorectal cancer. We obtained mAb 19F4 using a synthetic peptide containing antigen determinants of 17-1A antigen. The mAb 19F4 can bind the corresponding dominants of the 17-1A antigen in ELISA. Western-blot analysis demonstrated that mAb 19F4 recognized a 50-kD protein from cell lysates of MCF-7 (breast cancer cell line). Both mAb 19F4 and 17-1A detected a 42-kD protein in the cell lysates of HT-29 (colorectal cancer cell line). The results suggest that new members of the tumor-associated antigen family 17-1A may exist.展开更多
In this article,we comment on an article published in a recent issue of the World Journal of Gastroenterology.We specifically focus on the roles of human leukocyte antigen(HLA)and donor-specific antibodies(DSAs)in ped...In this article,we comment on an article published in a recent issue of the World Journal of Gastroenterology.We specifically focus on the roles of human leukocyte antigen(HLA)and donor-specific antibodies(DSAs)in pediatric liver transpl-antation(LT),as well as the relationship between immune rejection after LT and DSA.Currently,LT remains the standard of care for pediatric patients with end-stage liver disease or severe acute liver failure.However,acute and chronic re-jection continues to be a significant cause of graft dysfunction and loss.HLA mismatch significantly reduces graft survival and increases the risk of acute rejection.Among them,D→R one-way mismatch at three loci was significantly related to graft-versus-host disease incidence after LT.The adverse impact of HLA-DSAs on LT recipients is already established.Therefore,the evaluation of HLA and DSA is crucial in pediatric LT.展开更多
Objective: Recent studies have shown that tumor-associated macrophages(TAMs) play an important role in cancer invasion and metastasis. Our previous studies have reported that TAMs promote the invasion and metastasis o...Objective: Recent studies have shown that tumor-associated macrophages(TAMs) play an important role in cancer invasion and metastasis. Our previous studies have reported that TAMs promote the invasion and metastasis of gastric cancer(GC) cells through the Kindlin-2 pathway. However, the mechanism needs to be clarified.Methods: THP-1 monocytes were induced by PMA/interleukin(IL)-4/IL-13 to establish an efficient TAM model in vitro and M2 macrophages were isolated via flow cytometry. A dual luciferase reporter system and chromatin immunoprecipitation(Ch IP) assay were used to investigate the mechanism of transforming growth factor β2(TGFβ2) regulating Kindlin-2 expression. Immunohistochemistry was used to study the relationships among TAM infiltration in human GC tissues, Kindlin-2 protein expression, clinicopathological parameters and prognosis in human GC tissues. A nude mouse oncogenesis model was used to verify the invasion and metastasis mechanisms in vivo.Results: We found that Kindlin-2 expression was upregulated at both m RNA and protein levels in GC cells cocultured with TAMs, associated with higher invasion rate. Kindlin-2 knockdown reduced the invasion rate of GC cells under coculture condition. TGFβ2 secreted by TAMs regulated the expression of Kindlin-2 through the transcription factor NF-кB. TAMs thus participated in the progression of GC through the TGFβ2/NF-κB/Kindlin-2 axis. Kindlin-2 expression and TAM infiltration were significantly positively correlated with TNM stage, and patients with high Kindlin-2 expression had significantly poorer overall survival than patients with low Kindlin-2 expression. Furthermore, Kindlin-2 promoted the invasion of GC cells in vivo.Conclusions: This study elucidates the mechanism of TAMs participating in GC cell invasion and metastasis through the TGFβ2/NF-κB/Kindlin-2 axis, providing a possibility for new treatment options and approaches.展开更多
The aim of this study is to assess the effects of DNA methylation and historic acetylation, alone or in combination, on the expression of several tumor-associated genes and cell cycle progression in two established hu...The aim of this study is to assess the effects of DNA methylation and historic acetylation, alone or in combination, on the expression of several tumor-associated genes and cell cycle progression in two established human colon cancer cell lines: Colo-320 and SW1116. Treatments with 5-aza-2'-deoxycytidine (5-aza-dC) and trichostatin A, alone or in combination, were applied respectively. The methylation status of the CDKN2A promoter was determined by methyla-tion-specific PCR, and the acetylated status of the histones associated with the p21WAF1 and CDKN2A genes was examined by chromatin immunoprecipitation. The expression of the CDKN2A, p21WAF1, p53, p73, APC, c-myc, c-Ki-ras and survivin genes was detected by real-time RT-PCR and RT-PCR. The cell cycle profile was established by flow cytometry. We found that along with the demethylation of the CDKN2A gene promoter in both cell lines induced by 5-aza-dC alone or in combination with TSA, the expression of both CDKN2A and APC genes increased. The treatment of TSA or sodium butyrate up-regulated the transcription of p21WAF1 significantly by inducing the acetylation of histones H4 and H3, but failed to alter the acetylation level of CDKN2A-associated histones. No changes in transcription of p53, p73, c-myc, c-Ki-ras and survivin genes were observed. In addition, TSA or sodium butyrate was shown to arrest cells at the G1 phase. However, 5-aza-dC was not able to affect the cell cycle progression. In conclusion, regulation by epigenetic modification of the transcription of tumor-associated genes and the cell cycle progression in both human colon cancer cell lines Colo-320 and SW1116 is gene-specific.展开更多
Neutrophils,the most abundant leukocytes in human blood,are essential fighter immune cells against microbial infection.Based on the finding that neutrophils can either restrict or promote cancer progression,tumor-asso...Neutrophils,the most abundant leukocytes in human blood,are essential fighter immune cells against microbial infection.Based on the finding that neutrophils can either restrict or promote cancer progression,tumor-associated neutrophils(TAN)are classified into anti-tumor N1 and pro-tumor N2 subsets.One of the major mechanisms underlying the tumor-promoting function of N2-TANs is suppression of adaptive immune cells,in particular,cytotoxic T lymphocytes.Currently,no established methodologies are available that can unequivocally distinguish immunosuppressive TANs and granulocytic/polymorphonuclear myeloid-derived suppressor cells(G/PMN-MDSC).In view of the critical role of PMN-MDSCs in immune evasion and resistance to cancer immunotherapy,as established from data obtained with diverse cancer models,therapeutic strategies targeting these cells have been actively developed to enhance the efficacy of immunotherapy.Here,we have reviewed the available literature on strategies targeting PMN-MDSCs and summarized the findings into four categories:(1)depletion of existing PMN-MDSCs,(2)blockade of the development of PMNMDSCs,(3)blockade of PMN-MDSC recruitment,(4)inhibition of immunosuppressive function.Owing to their high mobility to inflamed organs and ability to trespass the blood-brain barrier,neutrophils are outstanding candidate carriers in nanoparticle-based therapies.Another attractive application of neutrophils in cancer therapy is the use of neutrophil membrane-derived nanovesicles as a surrogate of extracellular vesicles for more efficient and scalable drug delivery.In the second part of the review,we have highlighted recent advances in the field of neutrophil-based cancer drug delivery.Overall,we believe that neutrophil-based therapeutics are a rapidly growing area of cancer therapy with significant potential benefits.展开更多
AIM To study the role of semaphorin 4 D(Sema4 D) expression promoted by tumor-associated macrophages(TAMs) in gastric carcinoma cells and its clinical significance in the invasion and metastasis of gastric carcinoma.M...AIM To study the role of semaphorin 4 D(Sema4 D) expression promoted by tumor-associated macrophages(TAMs) in gastric carcinoma cells and its clinical significance in the invasion and metastasis of gastric carcinoma.METHODS CD68 and Sema4 D expression was analyzed in gastric carcinoma and adjacent normal tissues from 290 patients using the immunohistochemical streptavidinperoxidase method, and their relationships with clinicopathological features were evaluated. Human M2 macrophages were induced in vitro and co-cultured in non-contact with gastric carcinoma SGC-7901 cells. Changes in the secretory Sema4 D level in the SGC-7901 cell supernatant were measured using an enzymelinked immunosorbent assay. The effects of TAMs on SGC-7901 cell invasion and migration were assessed with invasion and migration assays, respectively.RESULTS CD68 and Sema4 D protein expression was significantly higher in gastric carcinoma tissues than in adjacent normal tissues(71.7% vs 33.8% and 74.5% vs 42.8%, respectively; P < 0.01). CD68 and Sema4 D protein expression was significantly associated with histological differentiation, TNM stage, and lymph node metastasis(P < 0.05), and their expression levels were positively correlated with one another(r = 0.467, P < 0.01). In the in vitro experiment, secretory Sema4 D protein expression was significantly increased in the supernatant of SGC-7901 cells co-cultured with TAMs compared with the blank control(1224.13 ± 29.43 vs 637.15 ± 33.84, P < 0.01). Cell invasion and metastasis were enhanced in the Transwell invasion and migration assays(P < 0.01).CONCLUSION TAMs promote the invasion and metastasis of gastric carcinoma cells possibly through upregulated secretory Sema4 D protein expression. Combined detection of TAM markers, CD68 and Sema4 D, in gastric carcinoma tissue shows potential to predict the trend of gastric carcinoma progression.展开更多
Gastric cancer is one of the most common human malignancies, and its prevalence has been shown to be well-correlated with cancer-related deaths worldwide. Regrettably, the poor prognosis of this disease is mainly due ...Gastric cancer is one of the most common human malignancies, and its prevalence has been shown to be well-correlated with cancer-related deaths worldwide. Regrettably, the poor prognosis of this disease is mainly due to its late diagnosis at advanced stages after the cancer has already metastasized. Recent research has emphasized the identification of cancer biomarkers in the hope of diagnosing cancer early and designing targeted therapies to reverse cancer progression. One member of a family of growth-related nicotinamide adenine dinucleotide(NADH or hydroquinone) oxidases is tumor-associated NADH oxidase(t NOX; ENOX2). Unlike its counterpart CNOX(ENOX1), identified in normal rat liver plasma membranes and shown to be stimulated by growth factors and hormones, t NOX activity purified from rat hepatoma cells is constitutively active. Its activity is detectable in the sera of cancer patients but not in those of healthy volunteers, suggesting its clinical relevance. Interestingly, t NOX expression was shown to be present in an array of cancer cell lines. More importantly, inhibition of t NOX was well correlated with reduced cancer cell growth and induction of apoptosis. RNA interference targeting t NOX expression in cancer cells effectively restored non-cancerous phenotypes, further supporting the vital role of t NOX in cancer cells. Here, we review the regulatory role of t NOX in gastric cancer cell growth.展开更多
AIM: To study at transcriptional level the similarities and differences of the physiological and biochemical activities between liver tumor (LT) and regenerating liver cells. METHODS: LT-associated genes and their exp...AIM: To study at transcriptional level the similarities and differences of the physiological and biochemical activities between liver tumor (LT) and regenerating liver cells. METHODS: LT-associated genes and their expression changes in LT were obtained from databases and scientific articles, and their expression profiles in rat liver regeneration (LR) were detected using Rat Genome 230 2.0 array. Subsequently their expression changes in LT and LR were compared and analyzed. RESULTS: One hundred and twenty one LT-associated genes were found to be LR-associated. Thirty four genes were up-regulated, and 14 genes were down-regulated in both LT and regenerating liver; 20 genes up-regulated in LT were down-regulated in regenerating liver; 21 up-regulated genes and 16 down-regulated genes in LT were up-regulated at some time points and down-regulated at others during LR. CONCLUSION: Results suggested that apoptosis activity suppressed in LT was still active in regenerating liver, and there are lots of similarities and differences between the LT and regenerating liver at the aspects of cell growth, proliferation, differentiation, migration and angiogenesis.展开更多
基金Supported by Ministerium für Wirtschaft,Arbeit und Gesundheit Mecklenburg-Vorpommern,No.TBI-V-1-241-VBW-084
文摘Therapeutic options for the treatment of colorectal cancer(CRC) are diverse but still not always satisfying. Recent success of immune checkpoint inhibition treatment for the subgroup of CRC patients suffering from hypermutated tumors suggests a permanent role of immune therapy in the clinical management of CRC. Substantial improvement in treatment outcome could be achieved by development of efficient patient-individual CRC vaccination strategies. This mini-review summarizes the current knowledge on the two general classes of targets: tumor-associated antigens(TAAs) and tumorspecific antigens. TAAs like carcinoembryonic antigen and melanoma associated antigen are present in and shared by a subgroup of patients and a variety of clinical studies examined the efficacy of different TAA-derived peptide vaccines. Combinations of several TAAs as the next step and the development of personalized TAA-based peptide vaccines are discussed. Improvements of peptidebased vaccines achievable by adjuvants and immunestimulatory chemotherapeutics are highlighted. Finally, we sum up clinical studies using tumor-specific antigens-in CRC almost exclusively neoantigens-which revealed promising results; particularly no severe adverse events were reported so far. Critical progress for clinical outcomes can be expected by individualizing neoantigen-based peptide vaccines and combining them with immunestimulatory chemotherapeutics and immune checkpoint inhibitors. In light of these data and latest developments, truly personalized neoantigen-based peptide vaccines can be expected to fulfill modern precision medicine's requirements and will manifest as treatment pillar for routine clinical management of CRC.
文摘AIM: To examine the concentration of a new antigen SC6 (SC6-Ag) recognized by monoclonal antibody (MAb)in patients with pancreatic cancer and other malignant or benign diseases and to understand whether SC6-Ag has any clinical significance in distinguishing pancreatic cancer from other gastrointestinal diseases.METHODS: Six hundred and ninety-five serum specimens obtained from 115 patients with pancreatic cancer, 154 patients with digestive cancer and 95patients with non-digestive cancer were used and classified in this study. Serum specimens obtained from 140 patients with benign digestive disease and 89 patients with non-benign digestive disease served as controls. Ascites was tapped from 16 pancreatic cancer patients, 19 hepatic cancer patients, 16 colonic cancer patients, 10 gastric cancer and 6 severe necrotic pancreatitis patients. The samples were quantitated by solid-phase radioimmunoassay. The cut-off values (CV)of 41, 80, and 118 U/mL were used.RESULTS: The average intra- and interassay CV detected by immunoradiometric assay of SC6-Ag was 5.4% and 8.7%, respectively. The sensitivity and specificity were 73.0% and 90.9% respectively. The levels in most malignant and benign cases were within the normal upper limit. Among the 16 pancreatic cancer cases, the concentration of SC6-Ag in ascites was over the normal range in 93.8% patients. There was no significant difference in the concentration of SC6-Ag.Decreased expression of SC6-Ag in sera was significantly related to tumor differentiation. The concentration of SC6-Ag was higher in patients before surgery than after surgery. The specificity of SC6-Ag and CA19-9 was significantly higher than that of ultrasound and computer tomography (CT) in pancreatic cancer patients. Higher positive predictive values were indicated in 92.3% SC6-Ag and 88.5% CA19-9, but lower in 73.8% ultrasound and 76.2% CT.CONCLUSION: The combined test of SC6-Ag and CA19-9 may improve the diagnostic rate of primary cancer. The detection of SC6-Ag is valuable in the diagnosis of pancreatic cancer before and after surgery.
基金A grant from the National Natural Science Foundation of China,No.81071973A grant from the Scientific Research Foundation for Returned Overseas Chinese Scholars,Bureau of Human Resources and Social Security of Beijing,China(Key project,2010)
文摘Hepatocellular carcinoma(HCC) is one of the most common tumors worldwide. The survival rate after the onset of symptoms is generally less than one year for the late presentation of HCC, and reliable tools for early diagnosis are lacking. Therefore, novel biomarkers for the early detection of HCC are urgently required. Recent studies show that the abnormal release of proteins by tumor cells can elicit humoral immune responses to self-antigens called tumor-associated antigens(TAAs). The corresponding autoantibodies can be detected before the clinical diagnosis of cancer. Therefore, there is growing interest in using serum autoantibodies as cancer biomarkers. In this review, we focus on the advances in research on autoantibodies against TAAs as serum biomarker for detection of HCC, the mechanism of the production of TAAs, and the association of autoantibodies with patients' clinical characteristics.
文摘Anterior gradient-2 (AGR2) promotes tumor growth, cell migration and cellular transformation and its enhanced expression is almost completely restricted to malignant tissues, thus making AGR2 an interesting target for the development of immunotherapeutic strategies. We investigated whether the AGR2 molecule comprises human leukocyte antigen (HLA)-A 0201-binding epitopes recognized by human cytotoxic T lymphocytes (CTLs), which could be targeted in dendritic cell (DC)-based cancer immunotherapy against colorectal cancer (CRC). We reviewed the sequence of AGR2 for peptides that could potentially bind to HLA-A 0201 with the aid of a computer-based program. Five candidate peptides with different binding scores were synthesized and tested. These peptides were then assessed for their immunogenicity to elicit specific immune responses mediated by CTLs in vitro by means of enzyme-linked immunospot assays and CTL assays. AGR2 was highly expressed in several CRC cell lines, including DK01, DLD1, KM 12C, HCT-8 and HT-29. DCs pulsed with AGR2-P2 (aa 11-19; LLVALSYTL) or AGR2-P4 (aa 127-135; RIMFVDPSL) generated potent CTLs that could lyse T2 cells pulsed with AGR2-P2 or AGR2-P4 and HLA-A0201+ AGR2-positive CRC cell lines in a strong dose-dependent and HLA-A 0201-restricted manner. In conclusion, these novel epitopes derived from AGR2 protein may be attractive candidates for DC-based immunotherapy for CRC.
基金Supported by National Natural Science Foundation of China,No.82074450Education Department of Hunan Province,No.21A0243,No.21B0374,No.22B0397,and No.22B0392+2 种基金Research Project of"Academician Liu Liang Workstation"of Hunan University of Traditional Chinese Medicine,No.21YS003Hunan Administration of Traditional Chinese Medicine,No.B2023001 and No.B2023009Hunan Provincial Natural Science Foundation of China,No.2023JJ40481。
文摘BACKGROUND Calculus bovis(CB),used in traditional Chinese medicine,exhibits anti-tumor effects in various cancer models.It also constitutes an integral component of a compound formulation known as Pien Tze Huang,which is indicated for the treatment of liver cancer.However,its impact on the liver cancer tumor microenvironment,particularly on tumor-associated macrophages(TAMs),is not well understood.AIM To elucidate the anti-liver cancer effect of CB by inhibiting M2-TAM polarization via Wnt/β-catenin pathway modulation.METHODS This study identified the active components of CB using UPLC-Q-TOF-MS,evaluated its anti-neoplastic effects in a nude mouse model,and elucidated the underlying mechanisms via network pharmacology,transcriptomics,and molecular docking.In vitro assays were used to investigate the effects of CB-containing serum on HepG2 cells and M2-TAMs,and Wnt pathway modulation was validated by real-time reverse transcriptase-polymerase chain reaction and Western blot analysis.RESULTS This study identified 22 active components in CB,11 of which were detected in the bloodstream.Preclinical investigations have demonstrated the ability of CB to effectively inhibit liver tumor growth.An integrated approach employing network pharmacology,transcriptomics,and molecular docking implicated the Wnt signaling pathway as a target of the antineoplastic activity of CB by suppressing M2-TAM polarization.In vitro and in vivo experiments further confirmed that CB significantly hinders M2-TAM polarization and suppresses Wnt/β-catenin pathway activation.The inhibitory effect of CB on M2-TAMs was reversed when treated with the Wnt agonist SKL2001,confirming its pathway specificity.CONCLUSION This study demonstrated that CB mediates inhibition of M2-TAM polarization through the Wnt/β-catenin pathway,contributing to the suppression of liver cancer growth.
基金This work was supported by the National Natural Science Foundation of China(82003018).
文摘Tumor-associated macrophages(TAMs)are emerging as targets for tumor therapy because of their primary role in promoting tumor progression.Several studies have been conducted to target TAMs by reducing their infiltration,depleting their numbers,and reversing their phenotypes to suppress tumor progression,leading to the development of drugs in preclinical and clinical trials.However,the heterogeneous characteristics of TAMs,including their ontogenetic and functional heterogeneity,limit their targeting.Therefore,in-depth exploration of the heterogeneity of TAMs,combined with immune checkpoint therapy or other therapeutic modalities could improve the efficiency of tumor treatment.This review focuses on the heterogeneous ontogeny and function of TAMs,as well as the current development of tumor therapies targeting TAMs and combination strategies.
文摘The relevant mechanism of tumor-associated macrophages(TAMs)in the treatment of colorectal cancer patients with immune checkpoint inhibitors(ICIs)is discussed,and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies.As a class of drugs widely used in clinical tumor immunotherapy,ICIs can act on regulatory molecules on cells that play an inhibitory role-immune checkpoints-and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system.The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly.The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs.ICIs can regulate the phenotypic function of TAMs,and TAMs can also affect the tolerance of colorectal cancer to ICI therapy.TAMs play an important role in ICI resistance,and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.
文摘This letter comments on the recently published manuscript by Huang et al in the World Journal of Gastroenterology,which focused on the immunomodulatory effect of Calculus bovis on hepatocellular carcinoma(HCC)tumor microenvironments(TME)by inhibiting M2-tumor-associated macrophage(M2-TAM)polarization via Wnt/β-catenin pathway modulation.Recent research highlights the crucial role of TAMs and their polarization towards the M2 phenotype in promoting HCC progression.Epigenetic regulation,particularly through microRNAs(miR),has emerged as a key factor in modulating immune responses and TAM polarization in the TME,influencing treatment responses and tumor progression.This editorial focuses on miR-206,which has been found to inhibit HCC cell proliferation and migration and promote apoptosis.Moreover,miR-206 enhances anti-tumor immune responses by promoting M1-polarization of Kupffer cells,facilitating CD8+T cell recruitment and suppressing liver cancer stem cell expansion.However,challenges remain in understanding the precise mechanisms regulating miR-206 and its potential as a therapeutic agent.Targeting epigenetic mechanisms and improving strategies,whether through pharmacological or genetic approaches,offer promising avenues to sensitize tumor cells to chemotherapy.Understanding the intricate interactions between cancer and non-coding RNA regulation opens new avenues for developing targeted therapies,potentially improving HCC prognosis.
基金Supported by Macao Science and Technology Development Fund,No.0086/2022/A and No.0097/2022/A2.
文摘In this article,we comment on the article by Huang et al.The urgent development of new therapeutic strategies targeting macrophage polarization is critical in the fight against liver cancer.Tumor-associated macrophages(TAMs),primarily of the M2 subtype,are instrumental in cellular communication within the tumor microenvironment and are influenced by various signaling pathways,including the wingless/integrated(Wnt)pathway.Activation of the Wnt signaling pathway is pivotal in promoting M2 TAMs polarization,which in turn can exacerbate hepatocarcinoma cell proliferation and migration.This manuscript emphasizes the burgeoning significance of the Wnt signaling pathway and M2 TAMs polarization in the pathogenesis and progression of liver cancer,highlighting the potential therapeutic benefits of inhibiting the Wnt pathway.Lastly,we point out areas in Huang et al’s study that require further research,providing guidance and new directions for similar studies.
文摘BACKGROUND Colorectal cancer(CRC)is a prevalent global malignancy with complex prognostic factors.Tumor-associated macrophages(TAMs)have shown paradoxical associations with CRC survival,particularly concerning the M2 subset.AIM We aimed to establish a simplified protocol for quantifying M2-like TAMs and explore their correlation with clinicopathological factors.METHODS A cross-sectional study included histopathological assessment of paraffinembedded tissue blocks obtained from 43 CRC patients.Using CD68 and CD163 immunohistochemistry,we quantified TAMs in tumor stroma and front,focusing on M2 proportion.Demographic,histopathological,and clinical parameters were collected.RESULTS TAM density was significantly higher at the tumor front,with the M2 proportion three times greater in both zones.The tumor front had a higher M2 proportion,which correlated significantly with advanced tumor stage(P=0.04),pathological nodal involvement(P=0.04),and lymphovascular invasion(LVI,P=0.01).However,no significant association was found between the M2 proportion in the tumor stroma and clinicopathological factors.CONCLUSION Our study introduces a simplified protocol for quantifying M2-like TAMs in CRC tissue samples.We demonstrated a significant correlation between an increased M2 proportion at the tumor front and advanced tumor stage,nodal involvement,and LVI.This suggests that M2-like TAMs might serve as potential indicators of disease progression in CRC,warranting further investigation and potential clinical application.
基金supported by the National Natural Science Foundation of China(no.82173146)the Shanghai Science and Technology Committee Rising-Star Program(no.21QA1411700).
文摘Tumor-associated macrophages(TAMs)actively interact with the tumor microenvironment(TME).The dynamic communication between TAMs and the TME is closely associated with tumorigenesis,progression,metastasis,and drug resistance.With the development of single-cell sequencing,specific TAMs have been identified,and their roles in the TME were explored.With the development of an under-standing of the interactions between TAMs and the TME,targeting TAMs has become a new treatment strategy for cancer therapy be-cause of their high plasticity.In this review,we highlight strategies for remodeling TAMs based on targeting specific genes involved in reg-ulating TAM phenotypes,blocking the crosstalk between TAMs and the TME,and targeting abnormal metabolic pathways.Moreover,we provided perspectives on the translational potential of targeting TAMs for cancer treatment,which could shed light on TAM-based thera-peutic strategy in the future.
文摘The problem of liver cancer is becoming increasingly important due to the epi-demic of metabolic diseases and persistent high alcohol consumption.This deter-mines great attention to the development and improvement of methods for early diagnosis and treatment of liver cancer.Huang et al presented a study in the World Journal of Gastroenterology,in which they showed that the use of the traditional Chinese medicine Calculus bovis(CB)can suppress tumor growth in mice by inhibiting M2 tumor-associated macrophages(TAM)through modulating the activity of the Wnt/β-catenin pathway.The interaction of CB components with the Wnt/β-catenin pathway,M2 TAM polarization,and tumor dynamics were studied using network pharmacology,transcriptomics,and molecular docking.It is now generally accepted that the polarization of TAM and the differentiation of the functions of M1 and M2 phagocytes are of great importance for the progression of neoplasms.It is assumed that M2 TAM promote proliferation and migration of tumor cells.Attempts to medicinally influence the Wnt/β-catenin pathway in order to modulate phagocyte polarization now belong to one of the most promising areas of immunotherapy of oncological diseases.Undoubtedly,the work of the Chinese authors deserves attention and further development.
基金Supported by the National Key Basic Research SpecificFunds(No.G19990 75 60 7) and the National ScienceFoundation for Outstanding Young Scientist of China(No.3 0 0 2 5 0 3 8)
文摘The tumor-associated antigen Ep-CAM (17-1A antigen), defined by the murine monoclonal antibody (mAb) 17-1A, has been identified as a 42-kD glycoprotein. The mAb 17-1A has been used for immunotherapy of colorectal cancer. We obtained mAb 19F4 using a synthetic peptide containing antigen determinants of 17-1A antigen. The mAb 19F4 can bind the corresponding dominants of the 17-1A antigen in ELISA. Western-blot analysis demonstrated that mAb 19F4 recognized a 50-kD protein from cell lysates of MCF-7 (breast cancer cell line). Both mAb 19F4 and 17-1A detected a 42-kD protein in the cell lysates of HT-29 (colorectal cancer cell line). The results suggest that new members of the tumor-associated antigen family 17-1A may exist.
文摘In this article,we comment on an article published in a recent issue of the World Journal of Gastroenterology.We specifically focus on the roles of human leukocyte antigen(HLA)and donor-specific antibodies(DSAs)in pediatric liver transpl-antation(LT),as well as the relationship between immune rejection after LT and DSA.Currently,LT remains the standard of care for pediatric patients with end-stage liver disease or severe acute liver failure.However,acute and chronic re-jection continues to be a significant cause of graft dysfunction and loss.HLA mismatch significantly reduces graft survival and increases the risk of acute rejection.Among them,D→R one-way mismatch at three loci was significantly related to graft-versus-host disease incidence after LT.The adverse impact of HLA-DSAs on LT recipients is already established.Therefore,the evaluation of HLA and DSA is crucial in pediatric LT.
基金supported by grants from the National Natural Science Foundation of China (No. 81372291).
文摘Objective: Recent studies have shown that tumor-associated macrophages(TAMs) play an important role in cancer invasion and metastasis. Our previous studies have reported that TAMs promote the invasion and metastasis of gastric cancer(GC) cells through the Kindlin-2 pathway. However, the mechanism needs to be clarified.Methods: THP-1 monocytes were induced by PMA/interleukin(IL)-4/IL-13 to establish an efficient TAM model in vitro and M2 macrophages were isolated via flow cytometry. A dual luciferase reporter system and chromatin immunoprecipitation(Ch IP) assay were used to investigate the mechanism of transforming growth factor β2(TGFβ2) regulating Kindlin-2 expression. Immunohistochemistry was used to study the relationships among TAM infiltration in human GC tissues, Kindlin-2 protein expression, clinicopathological parameters and prognosis in human GC tissues. A nude mouse oncogenesis model was used to verify the invasion and metastasis mechanisms in vivo.Results: We found that Kindlin-2 expression was upregulated at both m RNA and protein levels in GC cells cocultured with TAMs, associated with higher invasion rate. Kindlin-2 knockdown reduced the invasion rate of GC cells under coculture condition. TGFβ2 secreted by TAMs regulated the expression of Kindlin-2 through the transcription factor NF-кB. TAMs thus participated in the progression of GC through the TGFβ2/NF-κB/Kindlin-2 axis. Kindlin-2 expression and TAM infiltration were significantly positively correlated with TNM stage, and patients with high Kindlin-2 expression had significantly poorer overall survival than patients with low Kindlin-2 expression. Furthermore, Kindlin-2 promoted the invasion of GC cells in vivo.Conclusions: This study elucidates the mechanism of TAMs participating in GC cell invasion and metastasis through the TGFβ2/NF-κB/Kindlin-2 axis, providing a possibility for new treatment options and approaches.
基金This work was supported in part by National Natural Science Foundation of China(No.30170413)the Foundation for Jing Yuan FANG of National Excellent Doctoral Dissertation of China(No.199946)the Foundation of Shanghai Education Committee(Shuguang Plan,No.02SG45).
文摘The aim of this study is to assess the effects of DNA methylation and historic acetylation, alone or in combination, on the expression of several tumor-associated genes and cell cycle progression in two established human colon cancer cell lines: Colo-320 and SW1116. Treatments with 5-aza-2'-deoxycytidine (5-aza-dC) and trichostatin A, alone or in combination, were applied respectively. The methylation status of the CDKN2A promoter was determined by methyla-tion-specific PCR, and the acetylated status of the histones associated with the p21WAF1 and CDKN2A genes was examined by chromatin immunoprecipitation. The expression of the CDKN2A, p21WAF1, p53, p73, APC, c-myc, c-Ki-ras and survivin genes was detected by real-time RT-PCR and RT-PCR. The cell cycle profile was established by flow cytometry. We found that along with the demethylation of the CDKN2A gene promoter in both cell lines induced by 5-aza-dC alone or in combination with TSA, the expression of both CDKN2A and APC genes increased. The treatment of TSA or sodium butyrate up-regulated the transcription of p21WAF1 significantly by inducing the acetylation of histones H4 and H3, but failed to alter the acetylation level of CDKN2A-associated histones. No changes in transcription of p53, p73, c-myc, c-Ki-ras and survivin genes were observed. In addition, TSA or sodium butyrate was shown to arrest cells at the G1 phase. However, 5-aza-dC was not able to affect the cell cycle progression. In conclusion, regulation by epigenetic modification of the transcription of tumor-associated genes and the cell cycle progression in both human colon cancer cell lines Colo-320 and SW1116 is gene-specific.
基金partly supported by a graduate fellowship from China Scholarship Council(Grant No.201708340071)partly supported by a Career Catalyst Research Grant(Grant No.18548293)from the Susan G.Komen Foundation+1 种基金a Cancer Research Grant from the Mary Kay Foundationa Research Grant from the Elsa U.Pardee Foundation。
文摘Neutrophils,the most abundant leukocytes in human blood,are essential fighter immune cells against microbial infection.Based on the finding that neutrophils can either restrict or promote cancer progression,tumor-associated neutrophils(TAN)are classified into anti-tumor N1 and pro-tumor N2 subsets.One of the major mechanisms underlying the tumor-promoting function of N2-TANs is suppression of adaptive immune cells,in particular,cytotoxic T lymphocytes.Currently,no established methodologies are available that can unequivocally distinguish immunosuppressive TANs and granulocytic/polymorphonuclear myeloid-derived suppressor cells(G/PMN-MDSC).In view of the critical role of PMN-MDSCs in immune evasion and resistance to cancer immunotherapy,as established from data obtained with diverse cancer models,therapeutic strategies targeting these cells have been actively developed to enhance the efficacy of immunotherapy.Here,we have reviewed the available literature on strategies targeting PMN-MDSCs and summarized the findings into four categories:(1)depletion of existing PMN-MDSCs,(2)blockade of the development of PMNMDSCs,(3)blockade of PMN-MDSC recruitment,(4)inhibition of immunosuppressive function.Owing to their high mobility to inflamed organs and ability to trespass the blood-brain barrier,neutrophils are outstanding candidate carriers in nanoparticle-based therapies.Another attractive application of neutrophils in cancer therapy is the use of neutrophil membrane-derived nanovesicles as a surrogate of extracellular vesicles for more efficient and scalable drug delivery.In the second part of the review,we have highlighted recent advances in the field of neutrophil-based cancer drug delivery.Overall,we believe that neutrophil-based therapeutics are a rapidly growing area of cancer therapy with significant potential benefits.
文摘AIM To study the role of semaphorin 4 D(Sema4 D) expression promoted by tumor-associated macrophages(TAMs) in gastric carcinoma cells and its clinical significance in the invasion and metastasis of gastric carcinoma.METHODS CD68 and Sema4 D expression was analyzed in gastric carcinoma and adjacent normal tissues from 290 patients using the immunohistochemical streptavidinperoxidase method, and their relationships with clinicopathological features were evaluated. Human M2 macrophages were induced in vitro and co-cultured in non-contact with gastric carcinoma SGC-7901 cells. Changes in the secretory Sema4 D level in the SGC-7901 cell supernatant were measured using an enzymelinked immunosorbent assay. The effects of TAMs on SGC-7901 cell invasion and migration were assessed with invasion and migration assays, respectively.RESULTS CD68 and Sema4 D protein expression was significantly higher in gastric carcinoma tissues than in adjacent normal tissues(71.7% vs 33.8% and 74.5% vs 42.8%, respectively; P < 0.01). CD68 and Sema4 D protein expression was significantly associated with histological differentiation, TNM stage, and lymph node metastasis(P < 0.05), and their expression levels were positively correlated with one another(r = 0.467, P < 0.01). In the in vitro experiment, secretory Sema4 D protein expression was significantly increased in the supernatant of SGC-7901 cells co-cultured with TAMs compared with the blank control(1224.13 ± 29.43 vs 637.15 ± 33.84, P < 0.01). Cell invasion and metastasis were enhanced in the Transwell invasion and migration assays(P < 0.01).CONCLUSION TAMs promote the invasion and metastasis of gastric carcinoma cells possibly through upregulated secretory Sema4 D protein expression. Combined detection of TAM markers, CD68 and Sema4 D, in gastric carcinoma tissue shows potential to predict the trend of gastric carcinoma progression.
基金Supported by the Ministry of Health and WelfareFeng Yuan Hospital Research Project 103-004+1 种基金the National Science CouncilNo.NSC 100-2320-B-005-005 and No.NSC 101-2320-B-005-003
文摘Gastric cancer is one of the most common human malignancies, and its prevalence has been shown to be well-correlated with cancer-related deaths worldwide. Regrettably, the poor prognosis of this disease is mainly due to its late diagnosis at advanced stages after the cancer has already metastasized. Recent research has emphasized the identification of cancer biomarkers in the hope of diagnosing cancer early and designing targeted therapies to reverse cancer progression. One member of a family of growth-related nicotinamide adenine dinucleotide(NADH or hydroquinone) oxidases is tumor-associated NADH oxidase(t NOX; ENOX2). Unlike its counterpart CNOX(ENOX1), identified in normal rat liver plasma membranes and shown to be stimulated by growth factors and hormones, t NOX activity purified from rat hepatoma cells is constitutively active. Its activity is detectable in the sera of cancer patients but not in those of healthy volunteers, suggesting its clinical relevance. Interestingly, t NOX expression was shown to be present in an array of cancer cell lines. More importantly, inhibition of t NOX was well correlated with reduced cancer cell growth and induction of apoptosis. RNA interference targeting t NOX expression in cancer cells effectively restored non-cancerous phenotypes, further supporting the vital role of t NOX in cancer cells. Here, we review the regulatory role of t NOX in gastric cancer cell growth.
基金Supported by the National Basic Research 973 Pre-research Program of China, No. 2006CB708506
文摘AIM: To study at transcriptional level the similarities and differences of the physiological and biochemical activities between liver tumor (LT) and regenerating liver cells. METHODS: LT-associated genes and their expression changes in LT were obtained from databases and scientific articles, and their expression profiles in rat liver regeneration (LR) were detected using Rat Genome 230 2.0 array. Subsequently their expression changes in LT and LR were compared and analyzed. RESULTS: One hundred and twenty one LT-associated genes were found to be LR-associated. Thirty four genes were up-regulated, and 14 genes were down-regulated in both LT and regenerating liver; 20 genes up-regulated in LT were down-regulated in regenerating liver; 21 up-regulated genes and 16 down-regulated genes in LT were up-regulated at some time points and down-regulated at others during LR. CONCLUSION: Results suggested that apoptosis activity suppressed in LT was still active in regenerating liver, and there are lots of similarities and differences between the LT and regenerating liver at the aspects of cell growth, proliferation, differentiation, migration and angiogenesis.