期刊文献+
共找到181,457篇文章
< 1 2 250 >
每页显示 20 50 100
All‑Covalent Organic Framework Nanofilms Assembled Lithium‑Ion Capacitor to Solve the Imbalanced Charge Storage Kinetics 被引量:2
1
作者 Xiaoyang Xu Jia Zhang +6 位作者 Zihao Zhang Guandan Lu Wei Cao Ning Wang Yunmeng Xia Qingliang Feng Shanlin Qiao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期246-260,共15页
Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in superca... Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in supercapacitors.The development of these nanofilms offers a promising solution to address the persistent challenge of imbalanced charge storage kinetics between battery-type anode and capacitor-type cathode in lithium-ion capacitors(LICs).Herein,for the first time,custom-made COFBTMB-TP and COFTAPB-BPY nanofilms are synthesized as the anode and cathode,respectively,for an all-COF nanofilm-structured LIC.The COFBTMB-TP nanofilm with strong electronegative–CF3 groups enables tuning the partial electron cloud density for Li^(+) migration to ensure the rapid anode kinetic process.The thickness-regulated cathodic COFTAPB-BPY nanofilm can fit the anodic COF nanofilm in the capacity.Due to the aligned 1D channel,2D aromatic skeleton and accessible active sites of COF nanofilms,the whole COFTAPB-BPY//COFBTMB-TP LIC demonstrates a high energy density of 318 mWh cm^(−3) at a high-power density of 6 W cm^(−3),excellent rate capability,good cycle stability with the capacity retention rate of 77%after 5000-cycle.The COFTAPB-BPY//COFBTMB-TP LIC represents a new benchmark for currently reported film-type LICs and even film-type supercapacitors.After being comprehensively explored via ex situ XPS,7Li solid-state NMR analyses,and DFT calculation,it is found that the COFBTMB-TP nanofilm facilitates the reversible conversion of semi-ionic to ionic C–F bonds during lithium storage.COFBTMB-TP exhibits a strong interaction with Li^(+) due to the C–F,C=O,and C–N bonds,facilitating Li^(+) desolation and absorption from the electrolyte.This work addresses the challenge of imbalanced charge storage kinetics and capacity between the anode and cathode and also pave the way for future miniaturized and wearable LIC devices. 展开更多
关键词 Covalent organic frameworks Lithium-ion capacitor Charge storage kinetic
下载PDF
Combined Promoting Effects of Specific Organic Functional Groups and Alumina Surface Characteristics for the Design of a Highly Efficient NiMo/Al_(2)O_(3) Hydrodesulfurization Catalyst 被引量:2
2
作者 Li Huifeng Li Mingfeng +2 位作者 Zhang Le Wang Wei Nie Hong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期1-11,共11页
To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation betwe... To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation between the surface characteristics of four different alumina and the existing Mo species states was established.It was found that the Mo equilibrium adsorption capacity can be used as a specific descriptor to quantitatively evaluate the changes in surface characteristics of different alumina.A lower Mo equilibrium adsorption capacity for alumina means weaker metal-support interaction and the loaded Mo species are easier to transform into MoS2.However,the Mo-O-Al bonds still exist at the metal-support interface.The introduction of cationic surfactant hecadecyl trimethyl ammonium bromide(CTAB)can further improve Mo species dispersion through electrostatic attraction with Mo anions and interaction of its alkyl chain with the alumina surface;meanwhile,the introduction of ethylenediamine tetraacetic acid(EDTA)can complex with Ni ions to enhance the Ni-promoting effect on Mo.Therefore,the NiMo catalyst designed using alumina with lower Mo equilibrium adsorption capacity and the simultaneous addition of EDTA and CTAB exhibits the highest hydrodesulfurization activity for 4,6-dimethyl dibenzothiophene because of its proper metal-support interaction and more well-dispersed Ni-Mo-S active phases. 展开更多
关键词 ALUMINA Mo equilibrium adsorption capacity organic functional groups metal-support interaction HYDRODESULFURIZATION
下载PDF
Attention Markets of Blockchain-Based Decentralized Autonomous Organizations 被引量:1
3
作者 Juanjuan Li Rui Qin +3 位作者 Sangtian Guan Wenwen Ding Fei Lin Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1370-1380,共11页
The attention is a scarce resource in decentralized autonomous organizations(DAOs),as their self-governance relies heavily on the attention-intensive decision-making process of“proposal and voting”.To prevent the ne... The attention is a scarce resource in decentralized autonomous organizations(DAOs),as their self-governance relies heavily on the attention-intensive decision-making process of“proposal and voting”.To prevent the negative effects of pro-posers’attention-capturing strategies that contribute to the“tragedy of the commons”and ensure an efficient distribution of attention among multiple proposals,it is necessary to establish a market-driven allocation scheme for DAOs’attention.First,the Harberger tax-based attention markets are designed to facilitate its allocation via continuous and automated trading,where the individualized Harberger tax rate(HTR)determined by the pro-posers’reputation is adopted.Then,the Stackelberg game model is formulated in these markets,casting attention to owners in the role of leaders and other competitive proposers as followers.Its equilibrium trading strategies are also discussed to unravel the intricate dynamics of attention pricing.Moreover,utilizing the single-round Stackelberg game as an illustrative example,the existence of Nash equilibrium trading strategies is demonstrated.Finally,the impact of individualized HTR on trading strategies is investigated,and results suggest that it has a negative correlation with leaders’self-accessed prices and ownership duration,but its effect on their revenues varies under different conditions.This study is expected to provide valuable insights into leveraging attention resources to improve DAOs’governance and decision-making process. 展开更多
关键词 ATTENTION decentralized autonomous organizations Harberger tax Stackelberg game.
下载PDF
Coupling of reduced inorganic fertilizer with plant-based organic fertilizer as a promising fertilizer management strategy for colored rice in tropical regions 被引量:1
4
作者 Tingcheng Zhao Aibin He +3 位作者 Mohammad Nauman Khan Qi Yin Shaokun Song Lixiao Nie 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期93-107,共15页
Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer u... Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer use efficiency and high environmental pollution.Organic fertilizer is a promising way to improve soil quality and sustain high yields.However,most studies focus on the effect of animal-based organic fertilizers.The effects of different ratios of plantbased organic fertilizer and inorganic fertilizer on the grain yield and quality of colored rice have rarely been reported.Therefore,a two-year field experiment was conducted in 2020 and 2021 to study the effects of replacing inorganic N fertilizers with plant-based organic fertilizers on the yield,nitrogen use efficiency(NUE),and anthocyanin content of two colored rice varieties in a tropical region in China.The experimental treatments included no nitrogen fertilization(T1),100% inorganic nitrogen fertilizer(T2),30%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T3),60%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T4),and 100% plantbased organic fertilizer(T5).The total nitrogen provided to all the treatments except T1 was the same at 120 kg ha-1.Our results showed that the T3 treatment enhanced the grain yield and anthocyanin content of colored rice by increasing nitrogen use efficiency compared with T2.On average,grain yields were increased by 9 and 8%,while the anthocyanin content increased by 16 and 10% in the two colored rice varieties under T3 across the two years,respectively,as compared with T2.Further study of the residual effect of partial substitution of inorganic fertilizers showed that the substitution of inorganic fertilizer with plant-based organic fertilizer improved the soil physiochemical properties,and thus increased the rice grain yield,in the subsequent seasons.The highest grain yield of the subsequent rice crop was observed under the T5 treatment.Our results suggested that the application of plantbased organic fertilizers can sustain the production of colored rice with high anthocyanin content in tropical regions,which is beneficial in reconciling the relationship between rice production and environmental protection. 展开更多
关键词 colored rice organic fertilizer soil quality grain yield ANTHOCYANIN
下载PDF
Indolocarbazole-Based Small Molecule Cathode-Active Material Exhibiting Double Redox for High-Voltage Li-Organic Batteries 被引量:1
5
作者 Hyunji Park Hyojin Kye +5 位作者 Jong-Sung Lee Young-Chang Joo Dong Joo Min Bong-Gi Kim Soo Young Park Ji Eon Kwon 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期86-94,共9页
Most organic electrode materials(OEMs)for rechargeable batteries employ n-type redox centers,whose redox potentials are intrinsically limited<3.0 V versus Li^(+)/Li.However,p-type materials possessing high redox po... Most organic electrode materials(OEMs)for rechargeable batteries employ n-type redox centers,whose redox potentials are intrinsically limited<3.0 V versus Li^(+)/Li.However,p-type materials possessing high redox potentials experience low specific capacities because they are capable of only a single redox reaction within the stable electrochemical window of typical electrolytes.Herein,we report 5,11-diethyl-5,11-dihydroindolo[3,2-b]carbazole(DEICZ)as a novel p-type OEM,exhibiting stable plateaus at high discharge potentials of 3.44 and 4.09 V versus Li^(+)/Li.Notably,the second redox potential of DEICZ is within the stable electrochemical window.The mechanism of the double redox reaction is investigated using both theoretical calculations and experimental measurements,including density functional theory calculations,ex situ electron spin resonance,and X-ray photoelectron spectroscopy.Finally,hybridization with single-walled carbon nanotubes(SWCNT)improves the cycle stability and rate performance of DEICZ owing to theπ-πinteractions between the SWCNT and co-planar molecular structure of DEICZ,preventing the dissolution of active materials into the electrolyte.The DEICZ/SWCNT composite electrode maintains 70.4%of its initial specific capacity at 1-C rate and also exhibits high-rate capability,even performing well at 100-C rate.Furthermore,we demonstrate its potential for flexible batteries after applying 1000 bending stresses to the composite electrode. 展开更多
关键词 composite electrodes flexible batteries indolocarbazoles organic rechargeable batteries P-TYPE
下载PDF
A review of physicochemical properties of dissolved organic carbon and its impact over mountain glaciers 被引量:1
6
作者 NIU Hewen CHEN Mengxue +5 位作者 KANG Shichang SHUKLA Tanuj QIN Huili GAO Wanni HUANG Shihai ZHANG Fu 《Journal of Mountain Science》 SCIE CSCD 2024年第1期1-19,共19页
Investigating the characteristics and transformation of water-soluble carbonaceous matter in the cryosphere regions is important for understanding biogeochemical process in the earth system.Water-soluble carbonaceous ... Investigating the characteristics and transformation of water-soluble carbonaceous matter in the cryosphere regions is important for understanding biogeochemical process in the earth system.Water-soluble carbonaceous matter is a heterogeneous mixture of organic compounds that is soluble in aquatic environments.Despite its importance,we still lack systematic understanding for dissolved organic carbon(DOC)in several aspects including exact chemical composition and physical interactions with microorganisms,glacier meltwater.This review presents the chemical composition and physical properties of glacier DOC deposited through anthropogenic emission,terrestrial,and biogenic sources.We present the molecular composition of DOC and its effect over snow albedo and associated radiative forcings.Results indicate that DOC in snow/ice is made up of aromatic protein-like species,fulvic acid-like materials,and humic acid-like materials.Light-absorbing impurities in surface snow and glacier ice cause considerable albedo reduction and the associated radiative forcing is definitely positive.Water-soluble carbonaceous matter dominated the carbon transport in the high-altitude glacial area.Owing to prevailing global warming and projected increase in carbon emission,the glacial DOC is expected to release,which will have strong underlying impacts on cryosphere ecosystem.The results of this work have profound implications for better understanding the carbon cycle in high altitude cryosphere regions.A new compilation of globally distributed work is required,including large-scale measurements of glacial DOC over high-altitude cryosphere regions,to overcome and address the scientific challenges to constrain climate impacts of light-absorbing impurities related processes in Earth system and climate models. 展开更多
关键词 Mountain glaciers Dissolved organic carbon Molecular composition Radiative forcing
下载PDF
Challenges and Opportunities in Preserving Key Structural Features of 3D-Printed Metal/Covalent Organic Framework 被引量:1
7
作者 Ximeng Liu Dan Zhao John Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期362-381,共20页
Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and ... Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and functional surfaces,which have significant values in various application areas.The emerging 3D printing technology further provides MOF and COFs(M/COFs)with higher designability of their macrostructure and demonstrates large achievements in their performance by shaping them into advanced 3D monoliths.However,the currently available 3D printing M/COFs strategy faces a major challenge of severe destruction of M/COFs’microstructural features,both during and after 3D printing.It is envisioned that preserving the microstructure of M/COFs in the 3D-printed monolith will bring a great improvement to the related applications.In this overview,the 3D-printed M/COFs are categorized into M/COF-mixed monoliths and M/COF-covered monoliths.Their differences in the properties,applications,and current research states are discussed.The up-to-date advancements in paste/scaffold composition and printing/covering methods to preserve the superior M/COF microstructure during 3D printing are further discussed for the two types of 3D-printed M/COF.Throughout the analysis of the current states of 3D-printed M/COFs,the expected future research direction to achieve a highly preserved microstructure in the 3D monolith is proposed. 展开更多
关键词 Metal-organic frameworks Covalent organic frameworks 3D printing Microstructure MONOLITH
下载PDF
Step‑by‑Step Modulation of Crystalline Features and Exciton Kinetics for 19.2%Efficiency Ortho‑Xylene Processed Organic Solar Cells 被引量:1
8
作者 Bosen Zou Weiwei Wu +10 位作者 Top Archie Dela Pena Ruijie Ma Yongmin Luo Yulong Hai Xiyun Xie Mingjie Li Zhenghui Luo Jiaying Wu Chuluo Yang Gang Li He Yan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期258-272,共15页
With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices.... With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices.However,previous studies are heavily based in chloroform(CF)leaving behind substantial knowledge deficiencies in understanding the influence of solvent choice when introducing a third component.Herein,we present a case where a newly designed asymmetric small molecular acceptor using fluoro-methoxylated end-group modification strategy,named BTP-BO-3FO with enlarged bandgap,brings different morphological evolution and performance improvement effect on host system PM6:BTP-eC9,processed by CF and ortho-xylene(o-XY).With detailed analyses supported by a series of experiments,the best PCE of 19.24%for green solvent-processed OSCs is found to be a fruit of finely tuned crystalline ordering and general aggregation motif,which furthermore nourishes a favorable charge generation and recombination behavior.Likewise,over 19%PCE can be achieved by replacing spin-coating with blade coating for active layer deposition.This work focuses on understanding the commonly met yet frequently ignored issues when building ternary blends to demonstrate cutting-edge device performance,hence,will be instructive to other ternary OSC works in the future. 展开更多
关键词 organic solar cells Ternary design Solvent selection Flouro-methoxylated end group Morphological ordering
下载PDF
Unveiling Organic Electrode Materials in Aqueous Zinc-Ion Batteries:From Structural Design to Electrochemical Performance 被引量:1
9
作者 Dujuan Li Yuxuan Guo +4 位作者 Chenxing Zhang Xianhe Chen Weisheng Zhang Shilin Mei Chang-Jiang Yao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期47-81,共35页
Aqueous zinc-ion batteries(AZIBs)are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability.In response to the growing demand for green and sustainable en... Aqueous zinc-ion batteries(AZIBs)are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability.In response to the growing demand for green and sustainable energy storage solutions,organic electrodes with the scalability from inexpensive starting materials and potential for biodegradation after use have become a prominent choice for AZIBs.Despite gratifying progresses of organic molecules with electrochemical performance in AZIBs,the research is still in infancy and hampered by certain issues due to the underlying complex electrochemistry.Strategies for designing organic electrode materials for AZIBs with high specific capacity and long cycling life are discussed in detail in this review.Specifically,we put emphasis on the unique electrochemistry of different redox-active structures to provide in-depth understanding of their working mechanisms.In addition,we highlight the importance of molecular size/dimension regarding their profound impact on electrochemical performances.Finally,challenges and perspectives are discussed from the developing point of view for future AZIBs.We hope to provide a valuable evaluation on organic electrode materials for AZIBs in our context and give inspiration for the rational design of high-performance AZIBs. 展开更多
关键词 Aqueous zinc-ion batteries organic electrodes Functional groups Molecular size/geometry Electrochemical performances
下载PDF
Multiple enrichment mechanisms of organic matter in the Fengcheng Formation of Mahu Sag,Junggar Basin,NW China 被引量:1
10
作者 GONG Deyu LIU Zeyang +4 位作者 HE Wenjun ZHOU Chuanmin QIN Zhijun WEI Yanzhao YANG Chun 《Petroleum Exploration and Development》 SCIE 2024年第2期292-306,共15页
Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic compositio... Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag. 展开更多
关键词 Junggar Basin Mahu Sag Fengcheng Formation organic matter interglacial period VOLCANISM paleo-salinity paleo-environmental evolution
下载PDF
Organizing pneumonia secondary to pulmonary tuberculosis:A case report 被引量:1
11
作者 Min Liu Xi-Yang Dong +2 位作者 Zhi-Xiang Ding Qing-Hai Wang De-Hui Li 《World Journal of Clinical Cases》 SCIE 2024年第26期5974-5982,共9页
BACKGROUND Organizing pneumonia secondary to pulmonary tuberculosis is rare.Moreover,the temporal boundary between pulmonary tuberculosis and secondary organizing pneumonia has not been defined.We report a case of sec... BACKGROUND Organizing pneumonia secondary to pulmonary tuberculosis is rare.Moreover,the temporal boundary between pulmonary tuberculosis and secondary organizing pneumonia has not been defined.We report a case of secondary organizing pneumonia associated with pulmonary tuberculosis occurring after nine months of antituberculosis treatment.CASE SUMMARY A 54 years old man,previously diagnosed with pulmonary tuberculosis and tuberculous pleurisy,underwent nine months of antituberculosis treatment.Follow-up lung computed tomography revealed multiple new subpleural groundglass opacities in both lungs,and a lung biopsy confirmed organizing pneumonia.Treatment continued with anti-tuberculosis agents and hormone therapy,and subsequent dynamic pulmonary computed tomography exams demonstrated improvement in lesion absorption.No disease recurrence was observed after corticosteroid therapy discontinuation.CONCLUSION When treating patients with active pulmonary tuberculosis,if an increase in lesions is observed during anti-tuberculosis treatment,it is necessary to consider the possibility of tuberculosis-related secondary organizing pneumonia,timely lung biopsy is essential for early intervention. 展开更多
关键词 Pulmonary tuberculosis Antituberculosis treatment Lung biopsy organizing pneumonia CORTICOIDS Case report
下载PDF
Manipulating the Macroscopic and Microscopic Morphology of Large-Area Gravure-Printed ZnO Films for High-Performance Flexible Organic Solar Cells 被引量:1
12
作者 Zhenguo Wang Jingbo Guo +6 位作者 Yaqin Pan Jin Fang Chao Gong Lixin Mo Qun Luo Jian Lin Changqi Ma 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期229-239,共11页
Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological... Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological property of ZnO nanoinks resulted in unevenness and looseness of the gravure-printed ZnO interfacial layer.Here we propose a strategy to manipulate the macroscopic and microscopic of the gravure-printed ZnO films through using mixed solvent and poly(vinylpyrrolidone)(PVP)additive.The regulation of drying speed effectively manipulates the droplets fusion and leveling process and eliminates the printing ribbing structure in the macroscopic morphology.The additive of PVP effectively regulates the rheological property and improves the microscopic compactness of the films.Following this method,large-area ZnO∶PVP films(28×9 cm^(2))with excellent uniformity,compactness,conductivity,and bending durability were fabricated.The power conversion efficiencies of FOSCs with gravure-printed AgNWs and ZnO∶PVP films reached 14.34%and 17.07%for the 1 cm^(2)PM6:Y6 and PM6∶L8-BO flexible devices.The efficiency of 17.07%is the highest value to date for the 1 cm^(2)FOSCs.The use of mixed solvent and PVP addition also significantly enlarged the printing window of ZnO ink,ensuring high-quality printed thin films with thicknesses varying from 30 to 100 nm. 展开更多
关键词 flexible organic solar cell gravure printing large-area flexible interfacial layer rheology properties zinc oxide
下载PDF
Covalent Organic Framework with 3D Ordered Channel and Multi-Functional Groups Endows Zn Anode with Superior Stability 被引量:1
13
作者 Bin Li Pengchao Ruan +9 位作者 Xieyu Xu Zhangxing He Xinyan Zhu Liang Pan Ziyu Peng Yangyang Liu Peng Zhou Bingan Lu Lei Dai Jiang Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期350-363,共14页
Achieving a highly robust zinc(Zn)metal anode is extremely important for improving the performance of aqueous Zn-ion batteries(AZIBs)for advancing“carbon neutrality”society,which is hampered by the uncontrollable gr... Achieving a highly robust zinc(Zn)metal anode is extremely important for improving the performance of aqueous Zn-ion batteries(AZIBs)for advancing“carbon neutrality”society,which is hampered by the uncontrollable growth of Zn dendrite and severe side reactions including hydrogen evolution reaction,corrosion,and passivation,etc.Herein,an interlayer containing fluorinated zincophilic covalent organic framework with sulfonic acid groups(COF-S-F)is developed on Zn metal(Zn@COF-S-F)as the artificial solid electrolyte interface(SEI).Sulfonic acid group(-SO_(3)H)in COF-S-F can effectively ameliorate the desolvation process of hydrated Zn ions,and the three-dimensional channel with fluoride group(-F)can provide interconnected channels for the favorable transport of Zn ions with ion-confinement effects,endowing Zn@COF-S-F with dendrite-free morphology and suppressed side reactions.Consequently,Zn@COF-S-F symmetric cell can stably cycle for 1,000 h with low average hysteresis voltage(50.5 m V)at the current density of 1.5 m A cm^(-2).Zn@COF-S-F|Mn O_(2)cell delivers the discharge specific capacity of 206.8 m Ah g^(-1)at the current density of 1.2 A g^(-1)after 800 cycles with high-capacity retention(87.9%).Enlightening,building artificial SEI on metallic Zn surface with targeted design has been proved as the effective strategy to foster the practical application of high-performance AZIBs. 展开更多
关键词 Aqueous Zn ion batteries Covalent organic framework Interfacial modification Zn ion flux regulation Desolvation effect
下载PDF
The future of artificial hibernation medicine:protection of nerves and organs after spinal cord injury 被引量:1
14
作者 Caiyun Liu Haixin Yu +4 位作者 Zhengchao Li Shulian Chen Xiaoyin Li Xuyi Chen Bo Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期22-28,共7页
Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hi... Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hibernation techniques,mild hypothermia has preliminarily confirmed its clinical effect on spinal cord injury.However,its technical defects and barriers,along with serious clinical side effects,restrict its clinical application for spinal cord injury.Artificial hibernation is a futureoriented disruptive technology for human life support.It involves endogenous hibernation inducers and hibernation-related central neuromodulation that activate particular neurons,reduce the central constant temperature setting point,disrupt the normal constant body temperature,make the body adapt"to the external cold environment,and reduce the physiological resistance to cold stimulation.Thus,studying the artificial hibernation mechanism may help develop new treatment strategies more suitable for clinical use than the cooling method of mild hypothermia technology.This review introduces artificial hibernation technologies,including mild hypothermia technology,hibernation inducers,and hibernation-related central neuromodulation technology.It summarizes the relevant research on hypothermia and hibernation for organ and nerve protection.These studies show that artificial hibernation technologies have therapeutic significance on nerve injury after spinal co rd injury through inflammatory inhibition,immunosuppression,oxidative defense,and possible central protection.It also promotes the repair and protection of res pirato ry and digestive,cardiovascular,locomoto r,urinary,and endocrine systems.This review provides new insights for the clinical treatment of nerve and multiple organ protection after spinal cord injury thanks to artificial hibernation.At present,artificial hibernation technology is not mature,and research fa ces various challenges.Neve rtheless,the effort is wo rthwhile for the future development of medicine. 展开更多
关键词 artificial hibernation central thermostatic-resista nt regulation hypothermia multi-system protection neuroprotection organ protection spinal cord injury synthetic torpor
下载PDF
Modern approaches for detection of volatile organic compounds in metabolic studies focusing on pathogenic bacteria:Current state of the art 被引量:1
15
作者 Karolina Zuchowska Wojciech Filipiak 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第4期483-505,共23页
Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific micr... Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity. 展开更多
关键词 Volatile organic compounds Pathogenic bacteria metabolites Metabolomics Microextraction techniques Gas chromatography-mass spectrometry In vivo breath analysis In vitro model
下载PDF
Geophysical prediction of organic matter abundance in source rocks based on geochemical analysis:A case study of southwestern Bozhong Sag,Bohai Sea,China 被引量:1
16
作者 Xiang Wang Guang-Di Liu +5 位作者 Xiao-Lin Wang Jin-Feng Ma Zhen-Liang Wang Fei-Long Wang Ze-Zhang Song Chang-Yu Fan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期31-53,共23页
The Bozhong Sag is the largest petroliferous sag in the Bohai Bay Basin,and the source rocks of Paleogene Dongying and Shahejie Formations were buried deeply.Most of the drillings were located at the structural high,a... The Bozhong Sag is the largest petroliferous sag in the Bohai Bay Basin,and the source rocks of Paleogene Dongying and Shahejie Formations were buried deeply.Most of the drillings were located at the structural high,and there were few wells that met good quality source rocks,so it is difficult to evaluate the source rocks in the study area precisely by geochemical analysis only.Based on the Rock-Eval pyrolysis,total organic carbon(TOC)testing,the organic matter(OM)abundance of Paleogene source rocks in the southwestern Bozhong Sag were evaluated,including the lower of second member of Dongying Formation(E_(3)d2L),the third member of Dongying Formation(E_(3)d_(3)),the first and second members of Shahejie Formation(E_(2)s_(1+2)),the third member of Shahejie Formation(E_(2)s_(3)).The results indicate that the E_(2)s_(1+2)and E_(2)s_(3)have better hydrocarbon generative potentials with the highest OM abundance,the E_(3)d_(3)are of the second good quality,and the E_(3)d2L have poor to fair hydrocarbon generative potential.Furthermore,the well logs were applied to predict TOC and residual hydrocarbon generation potential(S_(2))based on the sedimentary facies classification,usingΔlogR,generalizedΔlogR,logging multiple linear regression and BP neural network methods.The various methods were compared,and the BP neural network method have relatively better prediction accuracy.Based on the pre-stack simultaneous inversion(P-wave impedance,P-wave velocity and density inversion results)and the post-stack seismic attributes,the three-dimensional(3D)seismic prediction of TOC and S_(2)was carried out.The results show that the seismic near well prediction results of TOC and S_(2)based on seismic multi-attributes analysis correspond well with the results of well logging methods,and the plane prediction results are identical with the sedimentary facies map in the study area.The TOC and S_(2)values of E_(2)s_(1+2)and E_(2)s_(3)are higher than those in E_(3)d_(3)and E_(3)d_(2)L,basically consistent with the geochemical analysis results.This method makes up the deficiency of geochemical methods,establishing the connection between geophysical information and geochemical data,and it is helpful to the 3D quantitative prediction and the evaluation of high-quality source rocks in the areas where the drillings are limited. 展开更多
关键词 Total organic carbon(TOC) Residual hydrocarbon generation potential(S_(2)) Geophysical prediction Seismic attribute Bozhong Sag Bohai Bay Basin
下载PDF
Retention of harvest residues promotes the accumulation of topsoil organic carbon by increasing particulate organic carbon in a Chinese fir plantation
17
作者 Jiamin Yang Ke Huang +5 位作者 Xin Guan Weidong Zhang Renshan Li Longchi Chen Silong Wang Qingpeng Yang 《Forest Ecosystems》 SCIE CSCD 2024年第5期720-727,共8页
Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowled... Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowledge on how SOC and its fractions(POC:particulate organic carbon;MAOC:mineral-associated organic carbon)respond to different harvest residue managements is limited.Methods In this study,a randomized block experiment containing SOH and WTH was conducted in a Chinese fir(Cunninghamia lanceolata)plantation.The effect of harvest residue management on SOC and its fractions in topsoil(0–10cm)and subsoil(20–40cm)was determined.Plant inputs(harvest residue retaining mass and fine root biomass)and microbial and mineral properties were also measured.Results The responses of SOC and its fractions to different harvest residue managements varied with soil depth.Specifically,SOH enhanced the content of SOC and POC in topsoil with increases of 15.9%and 29.8%,respectively,compared with WTH.However,SOH had no significant effects on MAOC in topsoil and SOC and its fractions in subsoil.These results indicated that the increase in POC induced by the retention of harvest residue was the primary contributor to SOC accumulation,especially in topsoil.The harvest residue managements affected SOC and its fractions through different pathways in topsoil and subsoil.The plant inputs(the increase in fine root biomass induced by SOH)exerted a principal role in the SOC accumulation in topsoil,whereas mineral and microbial properties played a more important role in regulating SOC dynamics than plants inputs in subsoil.Conclusion The retention of harvest residues can promote SOC accumulation by increasing POC,and is thus suggested as an effective technology to enhance the soil carbon sink for mitigating climate change in plantation management. 展开更多
关键词 Chinese fir plantation Soil organic carbon Particulate organic carbon Mineral-associated organic carbon Harvest residue management
下载PDF
A Solvent-Free Covalent Organic Framework Single-Ion Conductor Based on Ion-Dipole Interaction for All-Solid-State Lithium Organic Batteries
18
作者 Zhongping Li Kyeong-Seok Oh +6 位作者 Jeong-Min Seo Wenliang Qin Soohyoung Lee Lipeng Zhai Changqing Li Jong-Beom Baek Sang-Young Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期189-200,共12页
Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical vers... Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical versatility.However,the sluggish Li+conduction has hindered their practical applications.Here,we present a class of solvent-free COF single-ion conductors(Li-COF@P)based on weak ion-dipole interaction as opposed to traditional strong ion-ion interaction.The ion(Li+from the COF)-dipole(oxygen from poly(ethylene glycol)diacrylate embedded in the COF pores)interaction in the Li-COF@P promotes ion dissociation and Li+migration via directional ionic channels.Driven by this single-ion transport behavior,the Li-COF@P enables reversible Li plating/stripping on Li-metal electrodes and stable cycling performance(88.3%after 2000 cycles)in organic batteries(Li metal anode||5,5’-dimethyl-2,2’-bis-p-benzoquinone(Me2BBQ)cathode)under ambient operating conditions,highlighting the electrochemical viability of the Li-COF@P for all-solid-state organic batteries. 展开更多
关键词 Solid organic single-ion conductors Solvent-free covalent organic frameworks All-solid-state Li organic batteries Ion-dipole interaction Pore functionalization
下载PDF
Integrating Levels of Hierarchical Organization in Porous Organic Molecular Materials
19
作者 Jesus Ferrando‑Soria Antonio Fernandez 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期134-153,共20页
Porous organic molecular materials(POMMs)are an emergent class of molecular-based materials characterized by the formation of extended porous frameworks,mainly held by non-covalent interactions.POMMs represent a varie... Porous organic molecular materials(POMMs)are an emergent class of molecular-based materials characterized by the formation of extended porous frameworks,mainly held by non-covalent interactions.POMMs represent a variety of chemical families,such as hydrogen-bonded organic frameworks,porous organic salts,porous organic cages,C-H···πmicroporous crystals,supramolecular organic frameworks,π-organic frameworks,halogen-bonded organic framework,and intrinsically porous molecular materials.In some porous materials such as zeolites and metal organic frameworks,the integration of multiscale has been adopted to build materials with multifunctionality and optimized properties.Therefore,considering the significant role of hierarchy in porous materials and the growing importance of POMMs in the realm of synthetic porous materials,we consider it appropriate to dedicate for the first time a critical review covering both topics.Herein,we will provide a summary of literature examples showcasing hierarchical POMMs,with a focus on their main synthetic approaches,applications,and the advantages brought forth by introducing hierarchy. 展开更多
关键词 Porous organic molecular materials HIERARCHY Hydrogen-bonded organic frameworks Porous cages FULLERENE
下载PDF
Secondary organizing pneumonia after infection
20
作者 Lertluksana Limkul Prakarn Tovichien 《World Journal of Clinical Cases》 SCIE 2024年第36期6877-6882,共6页
This editorial explores the clinical implications of organizing pneumonia(OP)secondary to pulmonary tuberculosis,as presented in a recent case report.OP is a rare condition characterized by inflammation in the alveoli... This editorial explores the clinical implications of organizing pneumonia(OP)secondary to pulmonary tuberculosis,as presented in a recent case report.OP is a rare condition characterized by inflammation in the alveoli,which spreads to alveolar ducts and terminal bronchioles,usually after lung injuries caused by infections or other factors.OP is classified into cryptogenic(idiopathic)and secondary forms,the latter arising after infections,connective tissue diseases,tumors,or treatments like drugs and radiotherapy.Secondary OP may be triggered by infections caused by bacteria,viruses,fungi,mycobacteria,or parasites.Key diagnostic features include subacute onset of nonspecific respira-tory symptoms such as dry cough,chest pain,and exertional dyspnea.Imaging with computed tomography scans typically reveals three patterns:(1)Bilateral subpleural consolidation;(2)Nodular consolidation;and(3)A reticular pattern.Bronchoscopy with bronchoalveolar lavage helps exclude other causes.Standard treatment consists of corticosteroid therapy tapered over 6 months to 12 months.This editorial highlights clinical and diagnostic strategies to ensure timely and effective patient care. 展开更多
关键词 organizing pneumonia Secondary organizing pneumonia Cryptogenic organizing pneumonia Bronchoalveolar lavage Atoll sign
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部