期刊文献+
共找到1,274篇文章
< 1 2 64 >
每页显示 20 50 100
Reheat effect on the improvement in efficiency of the turbine driven by pulse detonation
1
作者 Junyu Liu Zhiwu Wang +3 位作者 Zixu Zhang Junlin Li Weifeng Qin Jingjing Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期200-210,共11页
Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are di... Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are dissipated into the gas as heat energy,some of them can be recycled during the expansion process in subsequent stages by the reheat effect,which should be helpful to improve the detonationdriven turbine efficiency.Taking this into account,this paper developed a numerical model of the detonation chamber coupled with a two-stage axial turbine,and a stoichiometric hydrogen-air mixture was used.The improvement in turbine efficiency attributable to the reheat effect was calculated by comparing the average efficiency of the stages with the efficiency of the two-stage turbine.The research indicated that the first stage was critical in suppressing the flow unsteadiness caused by pulse detonation,which stabilized the intake condition of the second stage and consequently allowed much of the flow losses from the first stage to be recycled,so that the efficiency of the two-stage turbine was improved.At a 95%confidence level,the efficiency improvement was stable at 4.5%—5.3%,demonstrating that the reheat effect is significant in improving the efficiency of the detonation-driven turbine. 展开更多
关键词 Pulse detonation turbine engine Hydrogen detonation turbine efficiency Reheat effect Multi-cycle detonation
下载PDF
Vibration attenuation performance of wind turbine tower using a prestressed tuned mass damper under seismic excitation
2
作者 Lei Zhenbo Liu Gang +1 位作者 Wang Hui Hui Yi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期511-524,共14页
With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cau... With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation. 展开更多
关键词 wind turbine tower prestressed tuned mass damper vibration control seismic excitation numerical simulation
下载PDF
Aero-Hydro-Elastic-Servo Modeling and Dynamic Response Analysis of A Monopile Offshore Wind Turbine Under Different Operating Scenarios
3
作者 XIE Shuang-yi GAO Jian +3 位作者 LI Yong-ran JIANG Shu-xin ZHANG Cheng-lin HE Jiao 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期379-393,共15页
This paper constructs a coupled aero-hydro-elastic-servo simulation framework for a monopile offshore wind turbine(OWT).In this framework,a detailed multi-body dynamics model of the monopile OWT including the gearbox,... This paper constructs a coupled aero-hydro-elastic-servo simulation framework for a monopile offshore wind turbine(OWT).In this framework,a detailed multi-body dynamics model of the monopile OWT including the gearbox,blades,tower and other components(nacelle,hub,bedplate,etc.)has been explicitly established.The effects of pile−soil interaction,controller and operational conditions on the turbine dynamic responses are studied systematically in time domain and frequency domain.The results show that(1)a comprehensive drivetrain model has the capability to provide a more precise representation of the complex dynamic characteristics exhibited by drivetrain components,which can be used as the basis for further study on the dynamic characteristics of the drivetrain.(2)The pile−soil interaction can influence the wind turbine dynamic responses,particularly under the parked condition.(3)The effect of the pile−soil interaction on tower responses is more significant than that on blade responses.(4)The use of the controller can substantially affect the rotor characteristics,which in turn influences the turbine dynamic responses.(5)The tower and blade displacements under the operational condition are much larger than those under the parked condition.The model and methodology presented in this study demonstrate potential for examining complex dynamic behaviors of the monopile OWTs.To ensure accuracy and precision,it is imperative to construct a detailed model of the wind turbine system,while also taking into account simulation efficiency. 展开更多
关键词 offshore wind turbine(OWT) pile−soil interaction dynamic response parked condition operating condition
下载PDF
Comparisons of Wave Force Model Effects on the Structural Responses and Fatigue Loads of a Semi-Submersible Floating Wind Turbine
4
作者 HAN Yanqing LE Conghuan +1 位作者 ZHANG Puyang XU Shengnan 《Journal of Ocean University of China》 CAS CSCD 2024年第1期69-79,共11页
The selection of wave force models will significantly impact the structural responses of floating wind turbines.In this study,comparisons of wave force model effects on the structural responses and fatigue loads of a ... The selection of wave force models will significantly impact the structural responses of floating wind turbines.In this study,comparisons of wave force model effects on the structural responses and fatigue loads of a semi-submersible floating wind turbine(SFWT)were conducted.Simulations were performed by employing the Morison equation(ME)with linear or second-order wave kinematics and potential flow theory(PFT)with first-or second-order wave forces.A comparison of regular waves,irregular waves,and coupled wind/waves analyses with the experimental data showed that many of the simulation results and experimental data are relatively consistent.However,notable discrepancies are found in the response amplitude operators for platform heave,tower base bending moment,and tension in mooring lines.PFT models give more satisfactory results of heave but more significant discrepan-cies in tower base bending moment than the ME models.In irregular wave analyses,low-frequency resonances were captured by PFT models with second-order difference-frequency terms,and high-frequency resonances were captured by the ME models or PFT models with second-order sum-frequency terms.These force models capture the response frequencies but do not reasonably predict the response amplitudes.The coupled wind/waves analyses showed more satisfactory results than the wave-only analyses.However,an important detail to note is that this satisfactory result is based on the overprediction of wind-induced responses. 展开更多
关键词 floating wind turbine wave force model potential flow theory Morison equation second-order wave forces
下载PDF
Dynamic Analysis of a 10 MW Floating Offshore Wind Turbine Considering the Tower and Platform Flexibility
5
作者 GAO Shan ZHANG Lixian +3 位作者 SHI Wei WANG Wenhua WANG Bin LI Xin 《Journal of Ocean University of China》 CAS CSCD 2024年第2期358-370,共13页
Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered ... Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered a rigid model,which could affect the calculation accuracy of the dynamic responses.The dynamic responses of a TripleSpar floating offshore wind turbine equipped with a 10 MW offshore wind turbine are discussed herein.The simulation of a floating offshore wind turbine under regular waves,white noise waves,and combined wind-wave conditions is conducted.The effects of the tower and platform flexibility on the motion and force responses of the TripleSpar semisubmersible floating offshore wind turbine are investigated.The results show that the flexibility of the tower and platform can influence the dynamic responses of a TripleSpar semisubmersible floating offshore wind turbine.Considering the flexibility of the tower and platform,the tower and platform pitch motions markedly increased compared with the fully rigid model.Moreover,the force responses,particularly for tower base loads,are considerably influenced by the flexibility of the tower and platform.Thus,the flexibility of the tower and platform for the coupled simulation of floating offshore wind turbines must be appropriately examined. 展开更多
关键词 floating offshore wind turbine TripleSpar semisubmersible platform rigidity and flexibility platform coupled simulation
下载PDF
Influence of Trailing-Edge Wear on the Vibrational Behavior of Wind Turbine Blades
6
作者 Yuanjun Dai Xin Wei +2 位作者 Baohua Li Cong Wang Kunju Shi 《Fluid Dynamics & Materials Processing》 EI 2024年第2期337-348,共12页
To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades,unworn blades and trailing-edge worn blades have been assessed through relevant modal tests.According to these experimen... To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades,unworn blades and trailing-edge worn blades have been assessed through relevant modal tests.According to these experiments,the natural frequencies of trailing-edge worn blades-1,-2,and-3 increase the most in the second to fourth order,thefifth order increases in the middle,and thefirst order increases the least.The damping ratio data indi-cate that,in general,thefirstfive-order damping ratios of trailing-edge worn blades-1 and trailing-edge worn blades-2 are reduced,and thefirstfive-order damping ratios of trailing-edge worn blades-3 are slightly improved.The mode shape diagram shows that the trailing-edge worn blades-1 and-2 have a large swing in the tip and the blade,whereas the second-and third-order vibration shapes of the trailing edge-worn blade-3 tend to be improved.Overall,all these results reveal that the blade’s mass and the wear area are the main fac-tors affecting the vibration characteristics of wind turbine blades. 展开更多
关键词 Wind turbine modal test natural frequency damping ratio mode shape
下载PDF
Ice-Induced Vibrational Response of Single-Pile Offshore Wind-Turbine Foundations
7
作者 Zhoujie Zhu Gang Wang +3 位作者 Qingquan Liu Guojun Wang Rui Dong Dayong Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第3期625-639,共15页
Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform... Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform,traditional mechanical models cannot be used.In this study,relying on the seabed soil data of an offshore wind farm,the m-method and the equivalent embedded method are used to address the single-pile wind turbine foundation problem for different pile diameters.An approach to determine the equivalent pile length is also proposed accordingly.The results provide evidence for the effectiveness and reliability of the model based on the equivalent embedded method. 展开更多
关键词 Wind turbine ice-induced vibration dynamic response equivalent embedded method
下载PDF
Novel Method for Evaluating the Aging of Aviation Turbine Engine Oils via High-Temperature Bearing Deposit Tests
8
作者 Hao Lichun Yang He +3 位作者 Song Haiqing Zhou Yunfan He Jingjian Liang Yuxiang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期67-77,共11页
Aviation turbine engine oils require excellent thermal-oxidative stability because of their high-temperature environments.High-temperature bearing deposit testing is a mandatory method for measuring the thermal-oxidat... Aviation turbine engine oils require excellent thermal-oxidative stability because of their high-temperature environments.High-temperature bearing deposit testing is a mandatory method for measuring the thermal-oxidative performance of aviation lubricant oils,and the relevant apparatus was improved in the present study.Two different commercial aviation turbine engine oils were tested,one with standard performance(known as the SL oil)and the other with high thermal stability,and their thermal-oxidative stability characteristics were evaluated.After 100 h of high-temperature bearing testing,the SL oil was analyzed by using various analytical techniques to investigate its thermal-oxidative process in the bearing test,with its thermal-oxidative degradation mechanism also being discussed.The results indicate that the developed high-temperature bearing apparatus easily meets the test requirements of method 3410.1 in standard FED-STD-791D.The viscosity and total acid number(TAN)of the SL oil increased with the bearing test time,and various deposits were produced in the bearing test,with the micro-particles of the carbon deposits being sphere-like,rod-like,and sheet-like in appearance.The antioxidant additives in the oil were consumed very rapidly in the first 30 h of the bearing test,with N-phenyl-1-naphthylamine being consumed faster than dioctyldiphenylamine.Overall,the oil thermal-oxidative process involves very complex physical and chemical mechanisms. 展开更多
关键词 aviation turbine engine oil high-temperature bearing deposit test thermal-oxidative degradation antioxidant additives
下载PDF
Research on the Icing Diagnosis ofWind Turbine Blades Based on FS–XGBoost–EWMA
9
作者 Jicai Guo Xiaowen Song +5 位作者 Chang Liu Yanfeng Zhang Shijie Guo JianxinWu Chang Cai Qing’an Li 《Energy Engineering》 EI 2024年第7期1739-1758,共20页
In winter,wind turbines are susceptible to blade icing,which results in a series of energy losses and safe operation problems.Therefore,blade icing detection has become a top priority.Conventional methods primarily re... In winter,wind turbines are susceptible to blade icing,which results in a series of energy losses and safe operation problems.Therefore,blade icing detection has become a top priority.Conventional methods primarily rely on sensor monitoring,which is expensive and has limited applications.Data-driven blade icing detection methods have become feasible with the development of artificial intelligence.However,the data-driven method is plagued by limited training samples and icing samples;therefore,this paper proposes an icing warning strategy based on the combination of feature selection(FS),eXtreme Gradient Boosting(XGBoost)algorithm,and exponentially weighted moving average(EWMA)analysis.In the training phase,FS is performed using correlation analysis to eliminate redundant features,and the XGBoost algorithm is applied to learn the hidden effective information in supervisory control and data acquisition analysis(SCADA)data to build a normal behavior model.In the online monitoring phase,an EWMA analysis is introduced to monitor the abnormal changes in features.A blade icing warning is issued when themonitored features continuously exceed the control limit,and the ambient temperature is below 0℃.This study uses data fromthree icing-affected wind turbines and one normally operating wind turbine for validation.The experimental results reveal that the strategy can promptly predict the icing trend among wind turbines and stably monitor the normally operating wind turbines. 展开更多
关键词 Wind turbine blade icing feature selection XGBoost EWMA
下载PDF
Impact of Blade-Flapping Vibration on Aerodynamic Characteristics of Wind Turbines under Yaw Conditions
10
作者 Shaokun Liu Zhiying Gao +2 位作者 Rina Su Mengmeng Yan Jianwen Wang 《Energy Engineering》 EI 2024年第8期2213-2229,共17页
Although the aerodynamic loading of wind turbine blades under various conditions has been widely studied,the radial distribution of load along the blade under various yaw conditions and with blade flapping phenomena i... Although the aerodynamic loading of wind turbine blades under various conditions has been widely studied,the radial distribution of load along the blade under various yaw conditions and with blade flapping phenomena is poorly understood.This study aims to investigate the effects of second-order flapwise vibration on the mean and fluctuation characteristics of the torque and axial thrust of wind turbines under yaw conditions using computational fluid dynamics(CFD).In the CFD model,the blades are segmented radially to comprehensively analyze the distribution patterns of torque,axial load,and tangential load.The following results are obtained.(i)After applying flapwise vibration,the torque and axial thrust of wind turbines decrease in relation to those of the rigid model,with significantly increased fluctuations.(ii)Flapwise vibration causes the blades to reciprocate along the axial direction,altering the local angle of attack and velocity of the blades relative to the incoming wind flow.This results in the contraction of the torque region from a circular shape to a complex“gear”shape,which is accompanied by evident oscillations.(iii)Compared to the tangential load,the axial load on the blades is more sensitive to flapwise vibration although both exhibit significantly enhanced fluctuations.This study not only reveals the impact of flapwise vibration on wind turbine blade performance,including the reduction of torque and axial thrust and increased operational fluctuations,but also clarifies the radial distribution patterns of blade aerodynamic characteristics,which is of great significance for optimizing wind turbine blade design and reducing fatigue risks. 展开更多
关键词 Wind turbine CFD numerical simulation aerodynamic characteristics yaw flapping vibration
下载PDF
Turbine Passage Secondary Flow Dynamics and Endwall Heat Transfer Under Different Inflow Turbulence
11
作者 Arjun K S Tide P S Biju N 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第3期51-62,共12页
This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Re... This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Reθ-γtransition model as well as using the high-resolution LES separately.The major secondary flow components,comprising the horseshoe,corner,and passage vortices are recognized and the impact on heat or mass transfer is investigated.The complicated behavior of turbine passage secondary flow generation and establishment are impacted by the perspective of boundary layer attributes and inflow turbulence.The passage vortex concerning the latest big leading-edge vane is generated by the enlargement of the circulation developed at the first instance adjacent to the pressure side becomes powerful and mixes with other vortex systems during its migration towards the suction side.The study conclusions reveal that substantial enhancements are attained on the endwall surface,for the entire spanwise blade extension on the pressure surface,and in the highly 3-D region close to the endwall on the suction surface.The forecasted suction surface thermal exchange depicts great conformity with the measurement values and precisely reproduces the enhanced thermal exchange owing to the development and lateral distribution of the secondary flows along the midspan of the blade passage downstream.The impacts of the different secondary flow structures on the endwall thermal exchange are described in depth. 展开更多
关键词 turbine VANE heat transfer ENDWALL TURBULENCE secondary flow
下载PDF
Preparation and property of seal coating for gas turbine compressor
12
作者 余沛坰 刘中华 +2 位作者 郑健生 徐伏根 陈千宝 《China Welding》 CAS 2024年第1期60-64,共5页
Double-layer structure of seal coating which consisted of a Ni5Al bond coating and a Ni25 graphite top coating were prepared on steel substrate of gas turbine compressor cylinder block.Bond coating was prepared by atm... Double-layer structure of seal coating which consisted of a Ni5Al bond coating and a Ni25 graphite top coating were prepared on steel substrate of gas turbine compressor cylinder block.Bond coating was prepared by atmospheric plasma spraying and top coating was prepared by flame spraying.The microstructure,mechanical properties and abradability of the coating were characterized by scanning elec-tron microscope(SEM),hardness tester,universal testing machine,thermal shock testing machine and abradability testing machine.The res-ults show that the overall spraying structure of the seal coating is uniform,the nickel metal phase is the skeleton supporting the entire coat-ing,and the coating is well bonded without separation.The seal coating has a bonding strength of not less than 7.7 MPa,excellent thermal stability,and thermal shock resistance cycle numbers at 500℃more than 50;the scratch length,deepest invasion depth and wear amount of the coating increase with rise of test temperature,with almost no coating adhesion,indicating that the seal coating has excellent abradability. 展开更多
关键词 gas turbine compressor seal coating MICROSTRUCTURE mechanical property abradability
下载PDF
Desired Dynamic Equation for Primary Frequency Modulation Control of Gas Turbines
13
作者 Aimin Gao Xiaobo Cui +2 位作者 Guoqiang Yu Jianjun Shu Tianhai Zhang 《Energy Engineering》 EI 2024年第5期1347-1361,共15页
Gas turbines play core roles in clean energy supply and the construction of comprehensive energy systems.The control performance of primary frequency modulation of gas turbines has a great impact on the frequency cont... Gas turbines play core roles in clean energy supply and the construction of comprehensive energy systems.The control performance of primary frequency modulation of gas turbines has a great impact on the frequency control of the power grid.However,there are some control difficulties in the primary frequency modulation control of gas turbines,such as the coupling effect of the fuel control loop and speed control loop,slow tracking speed,and so on.To relieve the abovementioned difficulties,a control strategy based on the desired dynamic equation proportional integral(DDE-PI)is proposed in this paper.Based on the parameter stability region,a parameter tuning procedure is summarized.Simulation is carried out to address the ease of use and simplicity of the proposed tuning method.Finally,DDE-PI is applied to the primary frequency modulation system of an MS6001B heavy-duty gas turbine.The simulation results indicate that the gas turbine with the proposed strategy can obtain the best control performance with a strong ability to deal with system uncertainties.The proposed method shows good engineering application potential. 展开更多
关键词 Gas turbine primary frequency modulation(PFM) desired dynamic equation(DDE) proportion-integral(PI)
下载PDF
Nonlinear Flap-Wise Vibration Characteristics ofWind Turbine Blades Based onMulti-Scale AnalysisMethod
14
作者 Qifa Lang Yuqiao Zheng +2 位作者 Tiancai Cui Chenglong Shi Heyu Zhang 《Energy Engineering》 EI 2024年第2期483-498,共16页
This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NR... This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NREL),to research the effects of the nonlinear flap-wise vibration characteristics.The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam,and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first.Then,the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the centrifugal force.Lastly,it is truncated by the Galerkin method and analyzed semi-analytically using the multi-scale analysis method,and numerical simulations are carried out to compare the simulation results of finite elements with the numerical simulation results using Campbell diagram analysis of blade vibration.The results indicated that the rotational speed of the impeller has a significant impact on blade vibration.When the wheel speed of 12.1 rpm and excitation amplitude of 1.23 the maximum displacement amplitude of the blade has increased from 0.72 to 3.16.From the amplitude-frequency curve,it can be seen that the multi-peak characteristic of blade amplitude frequency is under centrifugal nonlinearity.Closed phase trajectories in blade nonlinear vibration,exhibiting periodic motion characteristics,are found through phase diagrams and Poincare section diagrams. 展开更多
关键词 Wind turbine blades nonlinear vibration Galerkin method multi-scales method
下载PDF
Research on Fatigue Damage Behavior of Main Beam Sub-Structure of Composite Wind Turbine Blade
15
作者 Haixia Kou Bowen Yang +2 位作者 Xuyao Zhang Xiaobo Yang Haibo Zhao 《Structural Durability & Health Monitoring》 EI 2024年第3期277-297,共21页
Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectio... Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectionas the simulation object and establishes a composite laminate rectangular beam structure that simultaneouslyincludes the flange,web,and adhesive layer,referred to as the blade main beam sub-structure specimen,throughthe definition of blade sub-structures.This paper examines the progressive damage evolution law of the compositelaminate rectangular beam utilizing an improved 3D Hashin failure criterion,cohesive zone model,B-K failurecriterion,and computer simulation technology.Under static loading,the layup angle of the anti-shear web hasa close relationship with the static load-carrying capacity of the composite laminate rectangular beam;under fatigueloading,the fatigue damage will first occur in the lower flange adhesive area of the whole composite laminaterectangular beam and ultimately result in the fracture failure of the entire structure.These results provide a theoreticalreference and foundation for evaluating and predicting the fatigue performance of the blade main beamstructure and even the full-size blade. 展开更多
关键词 Composite laminate wind turbine blade sub-structure progressive damage analysis user material subroutine cohesive zone model
下载PDF
Flashover Probability of Wind Turbine Blade and Impact of Strong Electromagnetic Pulse from Lightning Strikes on Wind Turbine Safety
16
作者 Lixin YAO Bin XIAO +5 位作者 Jianwen ZHANG Weixiang FENG Renhong GUO Zengru YANG Chunliang ZHANG Hui YANG 《Meteorological and Environmental Research》 2024年第1期62-66,共5页
This paper systematically studies the flashover probability of wind turbine blade lightning arrester and the impact of strong electromagnetic pulses on the local and surrounding wind turbines during lightning strikes.... This paper systematically studies the flashover probability of wind turbine blade lightning arrester and the impact of strong electromagnetic pulses on the local and surrounding wind turbines during lightning strikes.The research results indicate that the flashover probability of direct lightning strikes by the wind turbine blade lightning arrester is almost negligible,and the strong electromagnetic pulse of wind turbine blade during lightning strikes has a serious impact on the electronic equipment of the machine,while the impact on the surrounding wind turbine is relatively small.At the same time,the calculation formula for the reflection of lightning current on the carbon brush between the wind turbine hub and the engine compartment during the flashing of the wind turbine blades is provided,and the calculation method for calculating the spatial gradient distribution of electromagnetic field intensity using Biot-Savart Law theorem is applied.The limitations of using wind turbine blades for lightning protection are pointed out,and a technical route for achieving wind turbine lightning safety is proposed,which can be used as a reference for wind turbine lightning protection technicians. 展开更多
关键词 Wind turbine Flashover probability of blade lightning arrester Spatial gradient of electromagnetic field intensity Technical route
下载PDF
Centrifuge tests for seismic response of single pile foundation supported wind turbines in sand influenced by earthquake history 被引量:2
17
作者 Wang Yubing Zhang Zhongchang +1 位作者 Wu Xiaofeng Zhu Bin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期623-636,共14页
This paper reports on two sets of centrifuge model tests of wind turbines in dry sand and saturated sand subjected to earthquake sequences.The wind turbine system is composed of a single pile foundation and a wind tur... This paper reports on two sets of centrifuge model tests of wind turbines in dry sand and saturated sand subjected to earthquake sequences.The wind turbine system is composed of a single pile foundation and a wind turbine.All tests were applied with liquefaction experiments and analysis projects(LEAP)waves to simplify the analysis.The objectives of the tests are to investigate:(1)the influence of earthquake history on the seismic response of wind turbines;(2)the influence of earthquake history on the dynamic pile-soil interaction;and(3)the influence of two different foundation types on the seismic response of wind turbines.The tests indicated that earthquake history has a significant influence on the natural frequency of the pile and the soil around the pile in the saturated sand,but has no obvious influence on the dry sand.The shear modulus of the soil and the acceleration amplification factor of the pile top in both tests increased and the maximum bending moment envelope of the single pile foundation shrunk.The stiffness of the p-y curve in saturated sand was increased by the earthquake history,while that in dry sand was not significantly affected. 展开更多
关键词 earthquake history effect wind turbine pile bending moment dry and saturated sand ground dynamic p-y curves
下载PDF
Sediment Erosion on Pelton Turbines:A Review 被引量:1
18
作者 Xinfeng Ge Jie Sun +8 位作者 Dongdong Chu Juan Liu Ye Zhou Hui Zhang Lei Zhang Huixiang Chen Kan Kan Maxime Binama Yuan Zheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第3期36-62,共27页
The Pelton turbine has been widely used to develop high-head water resources with sediments because of its advantages in life cycle costs.When a flood or monsoon season occurs,the sediment concentration in the river i... The Pelton turbine has been widely used to develop high-head water resources with sediments because of its advantages in life cycle costs.When a flood or monsoon season occurs,the sediment concentration in the river increases suddenly,causing severe erosion to the nozzle,needle,and runner of Pelton turbines.After decades of development,researchers have developed practical engineering experience to reduce the sediment concentration of the flow through the turbine and ensure the safety and efficiency of power generation.Research on the mechanism of sediment erosion,development of anti-erosion materials,and establishment of erosion prediction models have attracted scholarly interest in recent years.Extensive research has been conducted to determine a complete and valuable syndication erosion model.However,owing to the complexity of the flow and wear mechanisms,the influence of specific parameters of erosion and the syndication effect is still difficult to determine.Computational fluid dynamics and erosion monitoring technology have also been evaluated and applied.This paper presents a comprehensive review of the erosion of Pelton turbines,some of the latest technical methods,and possible future development directions. 展开更多
关键词 Pelton turbine Sediment erosion Sediment erosion mechanism CFD The experimental method
下载PDF
Hydrodynamic Characteristics of Three-Bucket Jacket Foundation for Offshore Wind Turbines During the Lowering Process 被引量:1
19
作者 ZHANG Pu-yang QI Xin +3 位作者 WEI Yu-mo ZHANG Sheng-wei LE Cong-huan DING Hong-yan 《China Ocean Engineering》 SCIE EI CSCD 2023年第1期73-84,共12页
The three-bucket jacket foundation is a new type of foundation for offshore wind turbine that has the advantages of fast construction speed and suitability for deep water. The study of the hoisting and launching proce... The three-bucket jacket foundation is a new type of foundation for offshore wind turbine that has the advantages of fast construction speed and suitability for deep water. The study of the hoisting and launching process is of great significance to ensure construction safety in actual projects. In this paper, a new launching technology is proposed that is based on the foundation of the three-bucket jacket for offshore wind turbine. A complete time domain simulation of the launching process of three-bucket jacket foundation is carried out by a theoretical analysis combined with hydrodynamic software Moses. At the same time, the effects of different initial air storage and sea conditions on the motion response of the structure and the hoisting cable tension are studied. The results show that the motion response of the structure is the highest when it is lowered to 1.5 times the bucket height. The natural period of each degree of freedom of the structure increases with the increase of the lowering depth. The structural motion response and the hoisting cable tension vary greatly in the early phases of Stages Ⅰ and Ⅲ, smaller in Stage Ⅱ, and gradually stabilize in the middle and late phases of Stage Ⅲ. 展开更多
关键词 three-bucket jacket foundation time domain simulation hoisting construction motion response offshore wind turbine
下载PDF
Coupled Time-Domain Investigation on a Vertical Axis Wind Turbine Supported on a Floating Platform 被引量:1
20
作者 CUI Jianhui ZHAI Yongjian +2 位作者 GUO Ying DENG Wanru LIU Liqin 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第2期365-376,共12页
The dynamic responses of a floating vertical axis wind turbine(VAWT)are assessed on the basis of an aero-hydro-mooring coupled model.The aerodynamic loads on the rotor are acquired with double-multiple stream tube met... The dynamic responses of a floating vertical axis wind turbine(VAWT)are assessed on the basis of an aero-hydro-mooring coupled model.The aerodynamic loads on the rotor are acquired with double-multiple stream tube method.First-and second-order wave loads are calculated on the basis of 3D potential theory.The mooring loads are simulated by catenary theory.The coupled model is established,and a numerical code is programmed to investigate the dynamic response of the semi-submersible VAWT.A model test is then conducted,and the numerical code is validated considering the hydrodynamic performance of the floating buoy.The responses of the floating VAWT are studied through the numerical simulation under the sea states of wind and regular/irregular waves.The effects of the second-order wave force on the motions are also investigated.Results show that the slow-drift responses in surge and pitch motions are significantly excited by the second-order wave forces.Furthermore,the effect of foundation motion on aerodynamic loads is examined.The normal and tangential forces of the blades demonstrate a slight increase due to the coupling effect between the buoy motion and the aerodynamic loads. 展开更多
关键词 offshore wind power semi-submersible floating foundation vertical axis wind turbine numerical calculation model test
下载PDF
上一页 1 2 64 下一页 到第
使用帮助 返回顶部