期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Estimation of Turbulent Kinetic Energy Dissipation Rate in the Bottom Boundary Layer of the Pearl River Estuary
1
作者 刘欢 吴超羽 任杰 《China Ocean Engineering》 SCIE EI 2011年第4期669-678,共10页
A structure function approach is applied to estimate the turbulent kinetic energy (TKE) dissipation rate in the bottom boundary layer of the Pearl River Estuary (PRE). Simultaneous measurements with an acoustic Do... A structure function approach is applied to estimate the turbulent kinetic energy (TKE) dissipation rate in the bottom boundary layer of the Pearl River Estuary (PRE). Simultaneous measurements with an acoustic Doppler velocimeter (ADV) supplied independent data for the verification of the structure function method. The results show that, 1) the structure function approach is reliable and successfully applied method to estimate the TKE dissipation rate. The observed dissipation rates range between 8.3 ×10^-4 W/kg and 4.9× 10^-6 W/kg in YM01 and between 3.4×10^-4 W/kg and 4.8×10^-7 W/kg in YM03, respectively, while exhibiting a strong quarter-diurnal variation. 2) The balance between the shear production and viscous dissipation is better achieved in the straight river. This first-order balance is significantly broken in the estuary by non-shear production/dissipation due to wave-induced fluctuations. 展开更多
关键词 structure function turbulent kinetic energy dissipation rate bottom boundary layer Pearl River Estuary
下载PDF
Turbulent Characteristic of Liquid Around a Chain of Bubbles in Non-Newtonian Fluid
2
作者 李少白 马友光 +2 位作者 朱春英 付涛涛 李怀志 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第5期883-888,共6页
The turbulence behavior of gas-liquid two-phase flow plays an important role in heat transfer and mass transfer in many chemical processes. In this work, a 2D particle image velocimetry (PIV) was used to investigate t... The turbulence behavior of gas-liquid two-phase flow plays an important role in heat transfer and mass transfer in many chemical processes. In this work, a 2D particle image velocimetry (PIV) was used to investigate the turbulent characteristic of fluid induced by a chain of bubbles rising in Newtonian and non-Newtonian fluids. The instantaneous flow field, turbulent kinetic energy (TKE) and TKE dissipation rate were measured. The results demonstrated that the TKE profiles were almost symmetrical along the column center and showed higher values in the central region of the column. The TKE was enhanced with the increase of gas flow and decrease of liquid viscosity. The maximum TKE dissipation rate appeared on both sides of the bubble chain, and increased with the increase of gas flow rate or liquid viscosity. These results provide an understanding for gas-liquid mass transfer in non-Newtonian fluids. 展开更多
关键词 non-Newtonian fluid gas-liquid two-phase flow turbulent kinetic energy turbulent kinetic energy dissipation rate
下载PDF
Robust Solution for Boundary Layer Height Detections with Coherent Doppler Wind Lidar 被引量:1
3
作者 Lu WANG Wei QIANG +3 位作者 Haiyun XIA Tianwen WEI Jinlong YUAN Pu JIANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第11期1920-1928,共9页
Although coherent Doppler wind lidar(CDWL)is promising in detecting boundary layer height(BLH),differences between BLH results are observed when different CDWL measurements are used as tracers.Here,a robust solution f... Although coherent Doppler wind lidar(CDWL)is promising in detecting boundary layer height(BLH),differences between BLH results are observed when different CDWL measurements are used as tracers.Here,a robust solution for BLH detections with CDWL is proposed and demonstrated:mixed layer height(MLH)is retrieved best from turbulent kinetic energy dissipation rate(TKEDR),while stable boundary layer height(SBLH)and residual layer height(RLH)can be retrieved from carrier-to-noise ratio(CNR).To study the cause of the BLH differences,an intercomparison experiment is designed with two identical CDWLs,where only one is equipped with a stability control subsystem.During the experiment,it is found that the CNR could be distorted by instrument instability because the coupling efficiency from free-space to the polarization-maintaining fiber of the telescope is sensitive to the surrounding environment.In the ML,a bias up to 2.13 km of the MLH from CNR is found,which is caused by the CNR deviation.In contrast,the MLH from TKEDR is robust as long as the accuracy of wind is guaranteed.In the SBL(RL),the CNR is found capable to retrieve SBLH and RLH simultaneously and robustly.This solution is tested during an observation period over one month.Statistical analysis shows that the root-mean-square errors(RMSE)in the MLH,SBLH,and RLH are 0.28 km,0.23 km,and 0.24 km,respectively. 展开更多
关键词 boundary layer height coherent Doppler wind lidar carrier-to-noise ratio turbulent kinetic energy dissipation rate
下载PDF
Study on Hydrography and Small-Scale Process over Zhoushan Sea Area
4
作者 WU He DU Min +1 位作者 WANG Xiaoyong MENG Jie 《Journal of Ocean University of China》 SCIE CAS 2015年第5期829-834,共6页
This paper mainly analyzes the tidal characteristics and small-scale mixing process near Zhoushan Islands. First, the spectral analysis and wavelet analysis are adopted for the measured tide level data and tidal curre... This paper mainly analyzes the tidal characteristics and small-scale mixing process near Zhoushan Islands. First, the spectral analysis and wavelet analysis are adopted for the measured tide level data and tidal current data from the Zhoushan sea area, which indicate that the main tidal cycle near Hulu Island and Taohua Island is semi-diurnal cycle, the diurnal cycle is subordinate. Both their intensities are changed periodically, meanwhile, the diurnal tide becomes stronger when semi-diurnal tide becomes weak. The intensity of baroclinie tidal current weakens at first and then strengthens from top to bottom. Then, in this paper, the Gregg-Henyey (G-H) parameterization method is adopted to calculate the turbulent kinetic energy dissipation rate based on the measured temperature and tidal current data. The results of which shown that the turbulent kinetic energy dissipation rate around Hulu Island is higher than that around Taohua Island. In most cases, the turbulent kinetic energy dissipation rate during spring tide is larger than that during the neap tide; the turbulent kinetic energy dissipation rate in the surface layer and the bottom layer are higher than that in the intermediate water; the changes of turbulent kinetic energy dissipation rate and tidal current are basically synchronous The modeled turbulent kinetic energy dissipation rate gets smaller with the increase of the stratification, however, gets larger with the increase of shearing. 展开更多
关键词 tidal characteristics parameterization method turbulent kinetic energy dissipation rate
下载PDF
Turbulence and mixing in a freshwater-influenced tidal bay: Observations and numerical modeling 被引量:1
5
作者 LIAN Qiang LIU ZhiYu 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第11期2049-2058,共10页
In situ observations and numerical simulations of turbulence are essential to understanding vertical mixing processes and their dynamical controls on both physical and biogeochemical processes in coastal embayments. U... In situ observations and numerical simulations of turbulence are essential to understanding vertical mixing processes and their dynamical controls on both physical and biogeochemical processes in coastal embayments. Using in situ data collected by bottom-mounted acoustic Doppler current profilers(ADCPs) and a free-falling microstructure profiler, as well as numerical simulations with a second-moment turbulence closure model, we studied turbulence and mixing in the Xiamen Bay, a freshwater-influenced tidal bay located at the west coast of the Taiwan Strait. Dynamically, the bay is driven predominantly by the M2 tide, and it is under a significant influence of the freshwater discharged from the Jiulong River. It is found that turbulence quantities such as the production and dissipation rates of the turbulent kinetic energy(TKE) were all subject to significant tidal variations, with a pronounced ebb-flood asymmetry. Turbulence was stronger during flood than ebb. During the flooding period, the whole water column was nearly well mixed with the depth-averaged TKE production rate and vertical eddy viscosity being up to 5?10?6 W kg?1 and 2?10?2 m2 s?1, respectively. In contrast, during the ebb strong turbulence was confined only to a 5?8 m thick bottom boundary layer, where turbulence intensity generally decreases with distance from the seafloor. Diagnosis of the potential energy anomaly showed that the ebb-flood asymmetry in turbulent dissipation and mixing was due mainly to tidal straining process as a result of the interaction between vertically shared tidal currents and horizontal density gradients. The role of vertical mixing in generating the asymmetry was secondary. A direct comparison of the modeled and observed turbulence quantities confirmed the applicability of the second-moment turbulence closure scheme in modeling turbulent processes in this weakly stratified tidally energetic environment, but also pointed out the necessity of further refinements of the model. 展开更多
关键词 tidal bay turbulent mixing second-moment turbulence closure model turbulent kinetic energy dissipation rate vertical eddy viscosity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部