This paper describes the application of the variance method for flux estimation over a mixed agricultural region in China. Eddy covariance and flux variance measurements were conducted in a near-surface layer over a n...This paper describes the application of the variance method for flux estimation over a mixed agricultural region in China. Eddy covariance and flux variance measurements were conducted in a near-surface layer over a non-uniform land surface in the central plain of China from 7 June to 20 July 2002. During this period, the mean canopy height was about 0.50 m. The study site consisted of grass (10% of area), beans (15%), corn (15%) and rice (60%). Under unstable conditions, the standard deviations of temperature and water vapor density (normalized by appropriate scaling parameters), observed by a single instrument, followed the Monin-Obukhov similarity theory. The similarity constants for heat (CT) and water vapor (Cq) were 1.09 and 1.49, respectively. In comparison with direct measurements using eddy covariance techniques, the flux variance method, on average, underestimated sensible heat flux by 21% and latent heat flux by 24%, which may be attributed to the fact that the observed slight deviations (20% or 30% at most) of the similarity "constants" may be within the expected range of variation of a single instrument from the generally-valid relations.展开更多
Flow distribution in branch piping system is affected by flow characteristics and different geometric variations. Most of the flow distribution studies are performed with one-dimensional analysis to yield overall info...Flow distribution in branch piping system is affected by flow characteristics and different geometric variations. Most of the flow distribution studies are performed with one-dimensional analysis to yield overall information only. However, detailed analysis is required to find effects of design parameters on the flow distribution. For this aspect, three-dimensional turbulent flow analysis was performed to assess turbulence model performance and effects of upstream pressure and branch pipe geometry. Three different turbulence models of standard k-e model, realizable k-e model and standard k-co yield similar results, indicating small effects of turbulence models on flow characteristics analysis. Geometric variations include area ratio of main and branch pipes, branch pipe diameter, and connection shape of main and branch pipes. Among these parameters, area ratio and branch diameter and shape show strong effect on flow distribution due to high friction and minor loss. Uniform flow distribution is one of common requirements in the branch piping system and this can be achieved with rather high total loss design.展开更多
Based on the proposed partly equidifferent mapping and its specific Differential Amplitude and Pulse Position Modulation(DAPPM) demodulation, a modified FSO scheme for turbulent channel is designed and analyzed. The n...Based on the proposed partly equidifferent mapping and its specific Differential Amplitude and Pulse Position Modulation(DAPPM) demodulation, a modified FSO scheme for turbulent channel is designed and analyzed. The novel Low Density Parity Check(LDPC) coded 4×4 and 4×8 DAPPM Free-Space Optical communication(FSO) system is constructed. The Monte Carlo simulation results show approximately 2d B transmit power reduction against classical LDPC-DAPPM at the identical Bit-Error-Rate in strong turbulent channel. The proposed partly equidifferent mapping is compatible with other modulations, so it enables widespread adoption in other coded FSO systems.展开更多
An explicit expression for local, instantaneous NO production rate model was proposed to simulate NO formation in turbulent methane-air combustion. The average production rates of mixture fraction and scalar dissipati...An explicit expression for local, instantaneous NO production rate model was proposed to simulate NO formation in turbulent methane-air combustion. The average production rates of mixture fraction and scalar dissipation were obtained from asymptotes through approximation of two single-variable probability-density function. The theory predicted significant contributions from the Zeldovich mechanism, but negligible contributions from the nitrous-oxide mechanism in the oxygenconsumption zone. The proposed model was used to simulate NO formation in the pilot methane-air jet diffusion combustion. The simulation results were compared with those obtained by the CFD software FLUENT module. Validation of predictions with the experimental data given by Sandia National Laboratory of the USA indicates that the proposed model yields better results than other models, and the deviation is under 5%. And in some complete reaction zones, the simulation results are even the same as the experimental data. Realizable κ-ε model, Reynold stress model and standard κ-ε model were also investigated to predict the turbulent combustion reaction, which shows that the simulation results of velocities, temperatures, and concentrations of combustion productions by standard κ-ε model are in accordance with the experimental data.展开更多
New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper us...New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper used oneand three-way joint simulation methods to simulate the refrigeration system of new energy vehicles.Firstly,a k-εturbulent flow model for the cooling pump flow field is established based on the principle of computational fluid dynamics.Then,the CFD commercial fluid analysis software FLUENT is used to simulate the flow field of the cooling pump under different inlet flow conditions.This paper proposes an optimization scheme for new energy vehicle engines’“boiling”phenomenon under high temperatures and long-time climbing conditions.The simulation results show that changing the radiator’s structure and adjusting the thermostat’s parameters can solve the problem of a“boiling pot.”The optimized new energy vehicle engine can maintain a better operating temperature range.The algorithm model can reference each cryogenic system component hardware selection and control strategy in the new energy vehicle’s engine.展开更多
A systematic analysis of the dynamic behavior of a gear-bearing system with nonlinear suspension, turbulent flow effect, long journal bearing approximation, nonlinear oil-film force and nonlinear gear mesh force is pe...A systematic analysis of the dynamic behavior of a gear-bearing system with nonlinear suspension, turbulent flow effect, long journal bearing approximation, nonlinear oil-film force and nonlinear gear mesh force is performed in the present study. The dynamic orbits of the system are observed by bifurcation diagrams plotted using the dimensionless unbalance coefficient and the dimensionless rotational speed ratio as control parameters. The onset of chaotic motion is identified from the phase diagrams, power spectra, Poincaré maps, Lyapunov exponents and fractal dimension of the gearbearing system. The numerical results reveal that the system exhibits a diverse range of periodic, sub-harmonic, quasiperiodic and chaotic behaviors. The results presented in this study provide some useful insights into the design and development of a gear-bearing system for rotating machinery that operates in highly rotational speed and highly nonlinear regimes.展开更多
Turbulent fluxes at the air-sea interface were estimated with data collected in 2011-2020 with a low-profile platform named OCARINA during eight experiments in five regions:2011,2015,and 2016 in the Iroise Sea;2012 in...Turbulent fluxes at the air-sea interface were estimated with data collected in 2011-2020 with a low-profile platform named OCARINA during eight experiments in five regions:2011,2015,and 2016 in the Iroise Sea;2012 in the tropical Atlantic;2014 in the Chilie-Peru upwelling;2017 and 2018 in the Mediterranean Sea,and 2018 and 2020 in Barbados.The observations were carried out with moderate winds(2-10 m s^(-1))and average wave heights of 1.5 m.In this study,the authors used the fluxes calculated by the bulk method using OCARINA-sampled data as the input.These data can validate the fluxes estimated from ERAS reanalysis data.The OCARINA and ERA5 data were taken concomitantly.To do this,the authors established an algorithm to extract the OCARINA data as closely as possible to the reanalysis data in time and position.The measurements of the OCARINA platform can conclude on the relevance of the widely used reanalysis data.展开更多
In this study,the fluid flow and mixing process in an impinging stream-rotating packed bed(IS-RPB)is simulated by using a new three-dimensional computational fluid dynamics model.Specifically,the gaseliquid flow is si...In this study,the fluid flow and mixing process in an impinging stream-rotating packed bed(IS-RPB)is simulated by using a new three-dimensional computational fluid dynamics model.Specifically,the gaseliquid flow is simulated by the Euler-Euler model,the hydrodynamics of the reactor is predicted by the RNG k-εmethod,and the high-gravity environment is simulated by the sliding mesh model.The turbulent mass transfer process is characterized by the concentration variance c^(2) and its dissipation rateεc formulations,and therefore the turbulent mass diffusivity can be directly obtained.The simulated segregation index Xs is in agreement with our previous experimental results.The simulated results reveal that the fringe effect of IS can be offset by the end effect at the inner radius of RPB,so the investigation of the coupling mechanism between IS and RPB is critical to intensify the mixing process in IS-RPB.展开更多
As a typical nonlinear wave,forward-leaning waves can be frequently encountered in the near-shore areas,which can impact coastal sediment transport significantly.Hence,it is of significance to describe the characteris...As a typical nonlinear wave,forward-leaning waves can be frequently encountered in the near-shore areas,which can impact coastal sediment transport significantly.Hence,it is of significance to describe the characteristics of the boundary layer beneath forward-leaning waves accurately,especially for the turbulent boundary layer.In this work,the linearized turbulent boundary layer model with a linear turbulent viscosity coefficient is applied,and the novel expression of the near-bed orbital velocity that has been worked out by the authors for forward-leaning waves of arbitrary forward-leaning degrees is further used to specify the free stream boundary condition of the bottom boundary layer.Then,a variable transformation is found so as to make the equation of the turbulent boundary layer model be solved analytically through a modified Bessel function.Consequently,an explicit analytical solution of the turbulent boundary layer beneath forward-leaning waves is derived by means of variable separation and variable transformation.The analytical solutions of the velocity profile and bottom shear stress of the turbulent boundary layer beneath forward-leaning waves are verified by comparing the present analytical results with typical experimental data available in the previous literature.展开更多
Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of t...Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of turbulent heat flux(THF).By combining multiple buoy observations along the south north storm track,we investigated the THF anomalies associated with tropical storm Danas(2019)in the East China Sea(ECS)during its complete life cycle from the intensification stage to the mature stage and finally to its dissipation on land.The storm passage is characterized by strong winds of 10-20 m/s and a sea level pressure below 1000 hPa,resulting in a substantial enhancement of THF.Latent heat(LH)fluxes are most strongly affected by wind speed,with a gradually increasing contribution of humidity along the trajectory.The relative contributions of wind speed and temperature anomalies to sensible heat(SH)depend on the stability of the boundary layer.Under stable conditions,SH variations are driven by wind speed,while under near-neutral conditions,SH variations are driven by temperature.A comparison of the observed THF and associated variables with outputs from the ERA 5 and MERRA 2 reanalysis products reveals that the reanalysis products can reproduce the basic evolution and composition of the observed THF.However,under extreme weather conditions,temperature and humidity variations are poorly captured by ERA 5 and MERRA 2,leading to large LH and SH errors.The differences in the observed and reproduced LH and SH during the passage of Danas amount to 26.1 and 6.6 W/m^(2) for ERA 5,respectively,and to 39.4 and 12.5 W/m^(2) for MERRA 2,respectively.These results demonstrate the need to improve the representation of tropical cyclones in reanalysis products to better predict their intensification process and reduce their damage.展开更多
Buildings with large open spaces in which chemicals are handled are often exposed to the risk of explosions.Computational fluid dynamics is a useful and convenient way to investigate contaminant dispersion in such lar...Buildings with large open spaces in which chemicals are handled are often exposed to the risk of explosions.Computational fluid dynamics is a useful and convenient way to investigate contaminant dispersion in such large spaces.The turbulent Schmidt number(Sc_(t))concept has typically been used in this regard,and most studies have adopted a default value.We studied the concentration distribution for sulfur hexafluoride(SF_(6))assuming different emission rates and considering the effect of Sc_(t).Then we examined the same problem for a light gas by assuming hydrogen gas(H_(2))as the contaminant.When SF_(6) was considered as the contaminant gas,a variation in the emission rate completely changed the concentration distribution.When the emission rate was low,the gravitational effect did not take place.For both low and high emission rates,an increase in S_(ct) accelerated the transport rate of SF_(6).In contrast,for H_(2) as the contaminant gas,a larger S_(ct) could induce a decrease in the H_(2) transport rate.展开更多
The outstanding issue to overcoming atmospheric turbulence on distant imaging is a fundamental interest and technological challenge.We propose a novel scenario and technique to restore the optical image in turbulent e...The outstanding issue to overcoming atmospheric turbulence on distant imaging is a fundamental interest and technological challenge.We propose a novel scenario and technique to restore the optical image in turbulent environmental by referring to Cyclopean image with binocular vision.With human visual intelligence,image distortion resulting from the turbulence is shown to be substantially suppressed.Numerical simulation results taking into account of the atmospheric turbulence,optical image system,image sensors,display and binocular vision perception are presented to demonstrate the robustness of the image restoration,which is compared with a single channel planar optical imaging and sensing.Experiment involving binocular telescope,image recording and the stereo-image display is conducted and good agreement is obtained between the simulation with perceptive experience.A natural extension of the scenario is to enhance the capability of anti-vibration or anti-shaking for general optical imaging with Cyclopean image.展开更多
Any biogas produced by the anaerobic fermentation of organic materials has the advantage of being an environmentally friendly biofuel.Nevertheless,the relatively low calorific value of such gases makes their effective...Any biogas produced by the anaerobic fermentation of organic materials has the advantage of being an environmentally friendly biofuel.Nevertheless,the relatively low calorific value of such gases makes their effective utilization in practical applications relatively difficult.The present study considers the addition of hydrogen as a potential solution to mitigate this issue.In particular,the properties of turbulent diffusion jet flames and the related pollutant emissions are investigated numerically for different operating pressures.The related numerical simulations are conducted by solving the RANS equations in the frame of the Reynolds Stress Model in combination with the flamelet approach.Radiation effects are also taken into account and the combustion kinetics are described via the GRI-Mech 3.0 reaction model.The considered hydrogen fuel enrichment spans the range from 0%to 50%in terms of volume.Pressure varies between 1 and 10 atm.The results show that both hydrogen addition and pressure increase lead to an improvement in terms of mixing quality and have a significant effect on flame temperature and height.They also reduce CO_(2) emissions but increase NOx production.Prompt NO is shown to be the predominant NO formation mechanism.展开更多
A gas puff imaging(GPI)diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation(TDE)method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI dat...A gas puff imaging(GPI)diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation(TDE)method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI data.However,with the TDE method it is difficult to analyze the data with fast transient events,such as edge-localized mode(ELM).Consequently,a method called the spatial displacement estimation(SDE)algorithm is developed to estimate the turbulence velocity with high temporal resolution.Based on the SDE algorithm,we make some improvements,including an adaptive median filter and super-resolution technology.After the development of the algorithm,a straight-line movement and a curved-line movement are used to test the accuracy of the algorithm,and the calculated speed agrees well with preset speed.This SDE algorithm is applied to the EAST GPI data analysis,and the derived propagation velocity of turbulence is consistent with that from the TDE method,but with much higher temporal resolution.展开更多
Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying i...Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying in sizes and lifespans,significantly influence the distribution of fluid velocities within the flow.Subsequently,the rapid velocity fluctuations in highly turbulent flows lead to elevated shear and normal stress levels.For this reason,to meticulously study these dynamics,more often than not,physical modeling is employed for studying the impact of turbulent flows on the stability and longevity of nearby structures.Despite the effectiveness of physical modeling,various monitoring challenges arise,including flow disruption,the necessity for concurrent gauging at multiple locations,and the duration of measurements.Addressing these challenges,image velocimetry emerges as an ideal method in fluid mechanics,particularly for studying turbulent flows.To account for measurement duration,a probabilistic approach utilizing a probability density function(PDF)is suggested to mitigate uncertainty in estimated average and maximum values.However,it becomes evident that deriving the PDF is not straightforward for all turbulence-induced stresses.In response,this study proposes a novel approach by combining image velocimetry with a stochastic model to provide a generic yet accurate description of flow dynamics in such applications.This integration enables an approach based on the probability of failure,facilitating a more comprehensive analysis of turbulent flows.Such an approach is essential for estimating both short-and long-term stresses on hydraulic constructions under assessment.展开更多
In this paper,a new efficient,and at the same time,very simple and general class of thermodynamically compatiblefinite volume schemes is introduced for the discretization of nonlinear,overdetermined,and thermodynamicall...In this paper,a new efficient,and at the same time,very simple and general class of thermodynamically compatiblefinite volume schemes is introduced for the discretization of nonlinear,overdetermined,and thermodynamically compatiblefirst-order hyperbolic systems.By construction,the proposed semi-discrete method satisfies an entropy inequality and is nonlinearly stable in the energy norm.A very peculiar feature of our approach is that entropy is discretized directly,while total energy conservation is achieved as a mere consequence of the thermodynamically compatible discretization.The new schemes can be applied to a very general class of nonlinear systems of hyperbolic PDEs,including both,conservative and non-conservative products,as well as potentially stiff algebraic relaxation source terms,provided that the underlying system is overdetermined and therefore satisfies an additional extra conservation law,such as the conservation of total energy density.The proposed family offinite volume schemes is based on the seminal work of Abgrall[1],where for thefirst time a completely general methodology for the design of thermodynamically compatible numerical methods for overdetermined hyperbolic PDE was presented.We apply our new approach to three particular thermodynamically compatible systems:the equations of ideal magnetohydrodynamics(MHD)with thermodynamically compatible generalized Lagrangian multiplier(GLM)divergence cleaning,the unifiedfirst-order hyperbolic model of continuum mechanics proposed by Godunov,Peshkov,and Romenski(GPR model)and thefirst-order hyperbolic model for turbulent shallow waterflows of Gavrilyuk et al.In addition to formal mathematical proofs of the properties of our newfinite volume schemes,we also present a large set of numerical results in order to show their potential,efficiency,and practical applicability.展开更多
The low-Reynolds-number full developed turbulent flow in channels is simulated using large eddy simulation(LES)method with the preconditioned algorithm and the dynamic subgrid-scale model,with a given disturbance in...The low-Reynolds-number full developed turbulent flow in channels is simulated using large eddy simulation(LES)method with the preconditioned algorithm and the dynamic subgrid-scale model,with a given disturbance in inlet boundary,after a short development section.The inlet Reynolds number based on momentum thickness is 670.The computed results show good agreement with direct numerical simulation(DNS),which include root mean square fluctuated velocity distribution and average velocity distribution.It is also found that the staggered phenomenon of the coherent structures is caused by sub-harmonic.The results clearly show the formation and evolution of horseshoe vortex in the turbulent boundary layer,including horseshoe vortex structure with a pair of streamwise vortexes and one-side leg of horseshoe vortex.Based on the results,the development of the horseshoe-shaped coherent structures is analyzed in turbulent boundary layer.展开更多
A low Reynolds number k-ε model is used in the numeri cal study on a circular semi-confined turbulent impinging jet . The result is c ompared with that of the standard k-ε model and a refined k-ε mode l, which re-c...A low Reynolds number k-ε model is used in the numeri cal study on a circular semi-confined turbulent impinging jet . The result is c ompared with that of the standard k-ε model and a refined k-ε mode l, which re-consi-dered the fluctuating pressure diffusion term in the dissipa tion rate equation (ε-equation) through modeling. It shows that the low Re ynolds number k-ε model and the standard k-ε model yield very poor performance, while the predicting ability of the refined k-ε model is mu ch improved , especially for the turbulent kinetic energy k. So it can be co ncluded that the poor performance of the standard k-ε model is owing to t he incorrect considering the effect of the fluctuating pressure diffusion term r ather than the use of the wall function near the wall just as presumed in the re ference.展开更多
A hybrid central-upwind scheme is proposed. Two sub-schemes, the central difference scheme and the Roets flux difference splitting scheme, are hybridized by means of a binary sensor function. In order to examine the c...A hybrid central-upwind scheme is proposed. Two sub-schemes, the central difference scheme and the Roets flux difference splitting scheme, are hybridized by means of a binary sensor function. In order to examine the capability of the proposed hybrid scheme in computing compressible turbulent flow around a curved surface body, especially the flow involving shock wave, three typical eases are investigated by using detached-eddy simulation technique. Numerical results show good agreements with the experimental measurements. The present hybrid scheme can be applied to simulating the compressible flow around a curved surface body involving shock wave and turbulence.展开更多
Turbulent spots play a key role in the formation of the turbulence and the transition. The generation and evolution of turbulent spots using the wall impulse model in the plane Couette flow are studied by direct numer...Turbulent spots play a key role in the formation of the turbulence and the transition. The generation and evolution of turbulent spots using the wall impulse model in the plane Couette flow are studied by direct numerical simulation of Navier-Stokes equations. A group of three-dimensional coupling compact difference schemes with high accuracy and high resolution is used in the numerical calculation. The important characteristics of turbulent spots based on the results of examples are analyzed, including the formation of random pulse, the generation of Reynolds stress, the growth of disturbance amplitude, and the continuous change of spot shape, especially the complex evolution process of the streamwise vortices. Computational results confirm that basic properties of turbulent spots in the laminar flow are similar to those in the turbulent flow.展开更多
文摘This paper describes the application of the variance method for flux estimation over a mixed agricultural region in China. Eddy covariance and flux variance measurements were conducted in a near-surface layer over a non-uniform land surface in the central plain of China from 7 June to 20 July 2002. During this period, the mean canopy height was about 0.50 m. The study site consisted of grass (10% of area), beans (15%), corn (15%) and rice (60%). Under unstable conditions, the standard deviations of temperature and water vapor density (normalized by appropriate scaling parameters), observed by a single instrument, followed the Monin-Obukhov similarity theory. The similarity constants for heat (CT) and water vapor (Cq) were 1.09 and 1.49, respectively. In comparison with direct measurements using eddy covariance techniques, the flux variance method, on average, underestimated sensible heat flux by 21% and latent heat flux by 24%, which may be attributed to the fact that the observed slight deviations (20% or 30% at most) of the similarity "constants" may be within the expected range of variation of a single instrument from the generally-valid relations.
基金Project supported by Changwon National University in 2010
文摘Flow distribution in branch piping system is affected by flow characteristics and different geometric variations. Most of the flow distribution studies are performed with one-dimensional analysis to yield overall information only. However, detailed analysis is required to find effects of design parameters on the flow distribution. For this aspect, three-dimensional turbulent flow analysis was performed to assess turbulence model performance and effects of upstream pressure and branch pipe geometry. Three different turbulence models of standard k-e model, realizable k-e model and standard k-co yield similar results, indicating small effects of turbulence models on flow characteristics analysis. Geometric variations include area ratio of main and branch pipes, branch pipe diameter, and connection shape of main and branch pipes. Among these parameters, area ratio and branch diameter and shape show strong effect on flow distribution due to high friction and minor loss. Uniform flow distribution is one of common requirements in the branch piping system and this can be achieved with rather high total loss design.
基金supported by the National High-tech R&D Program (863 Program) 2013AA041003the Natural Science Foundation of China under Grants 51165033the Science and Technology Department of Jiangxi Province of China under grant 20151BBE50046,20142BBE50035 and 20151BAB207052
文摘Based on the proposed partly equidifferent mapping and its specific Differential Amplitude and Pulse Position Modulation(DAPPM) demodulation, a modified FSO scheme for turbulent channel is designed and analyzed. The novel Low Density Parity Check(LDPC) coded 4×4 and 4×8 DAPPM Free-Space Optical communication(FSO) system is constructed. The Monte Carlo simulation results show approximately 2d B transmit power reduction against classical LDPC-DAPPM at the identical Bit-Error-Rate in strong turbulent channel. The proposed partly equidifferent mapping is compatible with other modulations, so it enables widespread adoption in other coded FSO systems.
文摘An explicit expression for local, instantaneous NO production rate model was proposed to simulate NO formation in turbulent methane-air combustion. The average production rates of mixture fraction and scalar dissipation were obtained from asymptotes through approximation of two single-variable probability-density function. The theory predicted significant contributions from the Zeldovich mechanism, but negligible contributions from the nitrous-oxide mechanism in the oxygenconsumption zone. The proposed model was used to simulate NO formation in the pilot methane-air jet diffusion combustion. The simulation results were compared with those obtained by the CFD software FLUENT module. Validation of predictions with the experimental data given by Sandia National Laboratory of the USA indicates that the proposed model yields better results than other models, and the deviation is under 5%. And in some complete reaction zones, the simulation results are even the same as the experimental data. Realizable κ-ε model, Reynold stress model and standard κ-ε model were also investigated to predict the turbulent combustion reaction, which shows that the simulation results of velocities, temperatures, and concentrations of combustion productions by standard κ-ε model are in accordance with the experimental data.
文摘New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper used oneand three-way joint simulation methods to simulate the refrigeration system of new energy vehicles.Firstly,a k-εturbulent flow model for the cooling pump flow field is established based on the principle of computational fluid dynamics.Then,the CFD commercial fluid analysis software FLUENT is used to simulate the flow field of the cooling pump under different inlet flow conditions.This paper proposes an optimization scheme for new energy vehicle engines’“boiling”phenomenon under high temperatures and long-time climbing conditions.The simulation results show that changing the radiator’s structure and adjusting the thermostat’s parameters can solve the problem of a“boiling pot.”The optimized new energy vehicle engine can maintain a better operating temperature range.The algorithm model can reference each cryogenic system component hardware selection and control strategy in the new energy vehicle’s engine.
文摘A systematic analysis of the dynamic behavior of a gear-bearing system with nonlinear suspension, turbulent flow effect, long journal bearing approximation, nonlinear oil-film force and nonlinear gear mesh force is performed in the present study. The dynamic orbits of the system are observed by bifurcation diagrams plotted using the dimensionless unbalance coefficient and the dimensionless rotational speed ratio as control parameters. The onset of chaotic motion is identified from the phase diagrams, power spectra, Poincaré maps, Lyapunov exponents and fractal dimension of the gearbearing system. The numerical results reveal that the system exhibits a diverse range of periodic, sub-harmonic, quasiperiodic and chaotic behaviors. The results presented in this study provide some useful insights into the design and development of a gear-bearing system for rotating machinery that operates in highly rotational speed and highly nonlinear regimes.
文摘Turbulent fluxes at the air-sea interface were estimated with data collected in 2011-2020 with a low-profile platform named OCARINA during eight experiments in five regions:2011,2015,and 2016 in the Iroise Sea;2012 in the tropical Atlantic;2014 in the Chilie-Peru upwelling;2017 and 2018 in the Mediterranean Sea,and 2018 and 2020 in Barbados.The observations were carried out with moderate winds(2-10 m s^(-1))and average wave heights of 1.5 m.In this study,the authors used the fluxes calculated by the bulk method using OCARINA-sampled data as the input.These data can validate the fluxes estimated from ERAS reanalysis data.The OCARINA and ERA5 data were taken concomitantly.To do this,the authors established an algorithm to extract the OCARINA data as closely as possible to the reanalysis data in time and position.The measurements of the OCARINA platform can conclude on the relevance of the widely used reanalysis data.
基金supported by the National Natural Science Foundation of China (22208328, 22378370 and 22108261)Fundamental Research Program of Shanxi Province(20210302124618)
文摘In this study,the fluid flow and mixing process in an impinging stream-rotating packed bed(IS-RPB)is simulated by using a new three-dimensional computational fluid dynamics model.Specifically,the gaseliquid flow is simulated by the Euler-Euler model,the hydrodynamics of the reactor is predicted by the RNG k-εmethod,and the high-gravity environment is simulated by the sliding mesh model.The turbulent mass transfer process is characterized by the concentration variance c^(2) and its dissipation rateεc formulations,and therefore the turbulent mass diffusivity can be directly obtained.The simulated segregation index Xs is in agreement with our previous experimental results.The simulated results reveal that the fringe effect of IS can be offset by the end effect at the inner radius of RPB,so the investigation of the coupling mechanism between IS and RPB is critical to intensify the mixing process in IS-RPB.
基金Project supported by the National Key R&D Program of China(No.2022YFC3204303)the National Natural Science Foundation of China(Nos.12202503,12132018,and 52394254)。
文摘As a typical nonlinear wave,forward-leaning waves can be frequently encountered in the near-shore areas,which can impact coastal sediment transport significantly.Hence,it is of significance to describe the characteristics of the boundary layer beneath forward-leaning waves accurately,especially for the turbulent boundary layer.In this work,the linearized turbulent boundary layer model with a linear turbulent viscosity coefficient is applied,and the novel expression of the near-bed orbital velocity that has been worked out by the authors for forward-leaning waves of arbitrary forward-leaning degrees is further used to specify the free stream boundary condition of the bottom boundary layer.Then,a variable transformation is found so as to make the equation of the turbulent boundary layer model be solved analytically through a modified Bessel function.Consequently,an explicit analytical solution of the turbulent boundary layer beneath forward-leaning waves is derived by means of variable separation and variable transformation.The analytical solutions of the velocity profile and bottom shear stress of the turbulent boundary layer beneath forward-leaning waves are verified by comparing the present analytical results with typical experimental data available in the previous literature.
基金Supported by the National Natural Science Foundation of China(Nos.42122040,42076016)。
文摘Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of turbulent heat flux(THF).By combining multiple buoy observations along the south north storm track,we investigated the THF anomalies associated with tropical storm Danas(2019)in the East China Sea(ECS)during its complete life cycle from the intensification stage to the mature stage and finally to its dissipation on land.The storm passage is characterized by strong winds of 10-20 m/s and a sea level pressure below 1000 hPa,resulting in a substantial enhancement of THF.Latent heat(LH)fluxes are most strongly affected by wind speed,with a gradually increasing contribution of humidity along the trajectory.The relative contributions of wind speed and temperature anomalies to sensible heat(SH)depend on the stability of the boundary layer.Under stable conditions,SH variations are driven by wind speed,while under near-neutral conditions,SH variations are driven by temperature.A comparison of the observed THF and associated variables with outputs from the ERA 5 and MERRA 2 reanalysis products reveals that the reanalysis products can reproduce the basic evolution and composition of the observed THF.However,under extreme weather conditions,temperature and humidity variations are poorly captured by ERA 5 and MERRA 2,leading to large LH and SH errors.The differences in the observed and reproduced LH and SH during the passage of Danas amount to 26.1 and 6.6 W/m^(2) for ERA 5,respectively,and to 39.4 and 12.5 W/m^(2) for MERRA 2,respectively.These results demonstrate the need to improve the representation of tropical cyclones in reanalysis products to better predict their intensification process and reduce their damage.
基金funded by the National Natural Science Foundation of China and the Machinery Industry Innovation Platform Construction Project of China Machinery Industry Federation,Grant Numbers 52378103 and 2019SA-10-07.
文摘Buildings with large open spaces in which chemicals are handled are often exposed to the risk of explosions.Computational fluid dynamics is a useful and convenient way to investigate contaminant dispersion in such large spaces.The turbulent Schmidt number(Sc_(t))concept has typically been used in this regard,and most studies have adopted a default value.We studied the concentration distribution for sulfur hexafluoride(SF_(6))assuming different emission rates and considering the effect of Sc_(t).Then we examined the same problem for a light gas by assuming hydrogen gas(H_(2))as the contaminant.When SF_(6) was considered as the contaminant gas,a variation in the emission rate completely changed the concentration distribution.When the emission rate was low,the gravitational effect did not take place.For both low and high emission rates,an increase in S_(ct) accelerated the transport rate of SF_(6).In contrast,for H_(2) as the contaminant gas,a larger S_(ct) could induce a decrease in the H_(2) transport rate.
基金supported by the National Natural Science Foundation of China(Grant No.61991452)Guangdong Key Project(Grant No.2020B0301030009)the National Key Research and Development Program of China(Grant No.2021YFB2802204).
文摘The outstanding issue to overcoming atmospheric turbulence on distant imaging is a fundamental interest and technological challenge.We propose a novel scenario and technique to restore the optical image in turbulent environmental by referring to Cyclopean image with binocular vision.With human visual intelligence,image distortion resulting from the turbulence is shown to be substantially suppressed.Numerical simulation results taking into account of the atmospheric turbulence,optical image system,image sensors,display and binocular vision perception are presented to demonstrate the robustness of the image restoration,which is compared with a single channel planar optical imaging and sensing.Experiment involving binocular telescope,image recording and the stereo-image display is conducted and good agreement is obtained between the simulation with perceptive experience.A natural extension of the scenario is to enhance the capability of anti-vibration or anti-shaking for general optical imaging with Cyclopean image.
文摘Any biogas produced by the anaerobic fermentation of organic materials has the advantage of being an environmentally friendly biofuel.Nevertheless,the relatively low calorific value of such gases makes their effective utilization in practical applications relatively difficult.The present study considers the addition of hydrogen as a potential solution to mitigate this issue.In particular,the properties of turbulent diffusion jet flames and the related pollutant emissions are investigated numerically for different operating pressures.The related numerical simulations are conducted by solving the RANS equations in the frame of the Reynolds Stress Model in combination with the flamelet approach.Radiation effects are also taken into account and the combustion kinetics are described via the GRI-Mech 3.0 reaction model.The considered hydrogen fuel enrichment spans the range from 0%to 50%in terms of volume.Pressure varies between 1 and 10 atm.The results show that both hydrogen addition and pressure increase lead to an improvement in terms of mixing quality and have a significant effect on flame temperature and height.They also reduce CO_(2) emissions but increase NOx production.Prompt NO is shown to be the predominant NO formation mechanism.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2022YFE03030001,2022YFE03020004 and 2022YFE 03050003)National Natural Science Foundation of China(Nos.12275310,11975275,12175277 and 11975271)+2 种基金the Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences(No.DSJJ-2021-01)the Collaborative Innovation Program of Hefei Science Center,Chinese Academy of Sciences(No.2021HSC-CIP019)the Users with Excellence Program of Hefei Science Center,Chinese Academy of Sciences(Nos.2021HSC-UE014 and 2021HSCUE012)。
文摘A gas puff imaging(GPI)diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation(TDE)method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI data.However,with the TDE method it is difficult to analyze the data with fast transient events,such as edge-localized mode(ELM).Consequently,a method called the spatial displacement estimation(SDE)algorithm is developed to estimate the turbulence velocity with high temporal resolution.Based on the SDE algorithm,we make some improvements,including an adaptive median filter and super-resolution technology.After the development of the algorithm,a straight-line movement and a curved-line movement are used to test the accuracy of the algorithm,and the calculated speed agrees well with preset speed.This SDE algorithm is applied to the EAST GPI data analysis,and the derived propagation velocity of turbulence is consistent with that from the TDE method,but with much higher temporal resolution.
文摘Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying in sizes and lifespans,significantly influence the distribution of fluid velocities within the flow.Subsequently,the rapid velocity fluctuations in highly turbulent flows lead to elevated shear and normal stress levels.For this reason,to meticulously study these dynamics,more often than not,physical modeling is employed for studying the impact of turbulent flows on the stability and longevity of nearby structures.Despite the effectiveness of physical modeling,various monitoring challenges arise,including flow disruption,the necessity for concurrent gauging at multiple locations,and the duration of measurements.Addressing these challenges,image velocimetry emerges as an ideal method in fluid mechanics,particularly for studying turbulent flows.To account for measurement duration,a probabilistic approach utilizing a probability density function(PDF)is suggested to mitigate uncertainty in estimated average and maximum values.However,it becomes evident that deriving the PDF is not straightforward for all turbulence-induced stresses.In response,this study proposes a novel approach by combining image velocimetry with a stochastic model to provide a generic yet accurate description of flow dynamics in such applications.This integration enables an approach based on the probability of failure,facilitating a more comprehensive analysis of turbulent flows.Such an approach is essential for estimating both short-and long-term stresses on hydraulic constructions under assessment.
文摘In this paper,a new efficient,and at the same time,very simple and general class of thermodynamically compatiblefinite volume schemes is introduced for the discretization of nonlinear,overdetermined,and thermodynamically compatiblefirst-order hyperbolic systems.By construction,the proposed semi-discrete method satisfies an entropy inequality and is nonlinearly stable in the energy norm.A very peculiar feature of our approach is that entropy is discretized directly,while total energy conservation is achieved as a mere consequence of the thermodynamically compatible discretization.The new schemes can be applied to a very general class of nonlinear systems of hyperbolic PDEs,including both,conservative and non-conservative products,as well as potentially stiff algebraic relaxation source terms,provided that the underlying system is overdetermined and therefore satisfies an additional extra conservation law,such as the conservation of total energy density.The proposed family offinite volume schemes is based on the seminal work of Abgrall[1],where for thefirst time a completely general methodology for the design of thermodynamically compatible numerical methods for overdetermined hyperbolic PDE was presented.We apply our new approach to three particular thermodynamically compatible systems:the equations of ideal magnetohydrodynamics(MHD)with thermodynamically compatible generalized Lagrangian multiplier(GLM)divergence cleaning,the unifiedfirst-order hyperbolic model of continuum mechanics proposed by Godunov,Peshkov,and Romenski(GPR model)and thefirst-order hyperbolic model for turbulent shallow waterflows of Gavrilyuk et al.In addition to formal mathematical proofs of the properties of our newfinite volume schemes,we also present a large set of numerical results in order to show their potential,efficiency,and practical applicability.
基金Supported by the National Natural Science Foundation of China(10772082)~~
文摘The low-Reynolds-number full developed turbulent flow in channels is simulated using large eddy simulation(LES)method with the preconditioned algorithm and the dynamic subgrid-scale model,with a given disturbance in inlet boundary,after a short development section.The inlet Reynolds number based on momentum thickness is 670.The computed results show good agreement with direct numerical simulation(DNS),which include root mean square fluctuated velocity distribution and average velocity distribution.It is also found that the staggered phenomenon of the coherent structures is caused by sub-harmonic.The results clearly show the formation and evolution of horseshoe vortex in the turbulent boundary layer,including horseshoe vortex structure with a pair of streamwise vortexes and one-side leg of horseshoe vortex.Based on the results,the development of the horseshoe-shaped coherent structures is analyzed in turbulent boundary layer.
文摘A low Reynolds number k-ε model is used in the numeri cal study on a circular semi-confined turbulent impinging jet . The result is c ompared with that of the standard k-ε model and a refined k-ε mode l, which re-consi-dered the fluctuating pressure diffusion term in the dissipa tion rate equation (ε-equation) through modeling. It shows that the low Re ynolds number k-ε model and the standard k-ε model yield very poor performance, while the predicting ability of the refined k-ε model is mu ch improved , especially for the turbulent kinetic energy k. So it can be co ncluded that the poor performance of the standard k-ε model is owing to t he incorrect considering the effect of the fluctuating pressure diffusion term r ather than the use of the wall function near the wall just as presumed in the re ference.
基金Supported by the National Science Foundation for Post-doctoral Scientists of China(20100481141,201104567)the Natural Science Foundation of Jiangsu Province(BK2011723)the Planned Projects for Postdoctoral Research Foundation of Jiangsu Province(0902001C)~~
文摘A hybrid central-upwind scheme is proposed. Two sub-schemes, the central difference scheme and the Roets flux difference splitting scheme, are hybridized by means of a binary sensor function. In order to examine the capability of the proposed hybrid scheme in computing compressible turbulent flow around a curved surface body, especially the flow involving shock wave, three typical eases are investigated by using detached-eddy simulation technique. Numerical results show good agreements with the experimental measurements. The present hybrid scheme can be applied to simulating the compressible flow around a curved surface body involving shock wave and turbulence.
文摘Turbulent spots play a key role in the formation of the turbulence and the transition. The generation and evolution of turbulent spots using the wall impulse model in the plane Couette flow are studied by direct numerical simulation of Navier-Stokes equations. A group of three-dimensional coupling compact difference schemes with high accuracy and high resolution is used in the numerical calculation. The important characteristics of turbulent spots based on the results of examples are analyzed, including the formation of random pulse, the generation of Reynolds stress, the growth of disturbance amplitude, and the continuous change of spot shape, especially the complex evolution process of the streamwise vortices. Computational results confirm that basic properties of turbulent spots in the laminar flow are similar to those in the turbulent flow.