将加速度负反馈(negative acceleration feedback,NAF)控制器与最小均方自适应滤波(filtered-x least mean square,FxLMS)算法相结合,提出了一种改进的反馈式次级通道阻尼补偿方法,来提高FxLMS控制器的性能。针对垂尾模型低阶模态抖振...将加速度负反馈(negative acceleration feedback,NAF)控制器与最小均方自适应滤波(filtered-x least mean square,FxLMS)算法相结合,提出了一种改进的反馈式次级通道阻尼补偿方法,来提高FxLMS控制器的性能。针对垂尾模型低阶模态抖振响应的控制问题,设计NAF控制器对次级通道进行反馈式阻尼补偿,建立了多模态的NAF-FxLMS控制器,随后开展垂尾抖振响应主动控制的地面模拟实验。实验结果表明,相比于单独的FxLMS控制器或NAF控制器,NAF-FxLMS控制器对垂尾抖振响应具有更好的控制效果。展开更多
Our research aim is to investigate the buffet alleviation effect of static or vibrating bulges attached on the forebody surface of the model.Experiments and numerical simulations on a model consisting of a sharp-edged...Our research aim is to investigate the buffet alleviation effect of static or vibrating bulges attached on the forebody surface of the model.Experiments and numerical simulations on a model consisting of a sharp-edged,70°-leading edge sweep delta wing and twin swept back vertical tails were conducted.Models with different bulges were tested and computed at 10 and 20 m/s of free stream velocity at angles of attack ranging from 20°–50°.Dynamic strain gauge and multichannel data acquisition and analysis system were employed for the measurement of unsteady root strain on the vertical tails.Experimental and computational results show that both static and vibrating bulges behave effectively as a novel tool to alleviate tail buffet,and the alleviation effect depends largely on the vibrating frequency.Besides,one-sided bulge can only alleviate the buffeting response for the tail of the same side,and it has no obvious alleviation effect for the opposite tail.Results of the spectral analysis reveal that there are generally three peaks of spectral density for aircrafts of this configuration,and bulges used in this paper could alleviate tail buffeting,but the total lift and drag of the whole model show no obvious deviation compared to the base model and the dominant frequency of the vibration of the tails has not shifted.展开更多
Tail buffeting at high angle of attack causes distinct fatigue problem on tail structure of twin tail fighters.In this study,a piezoelectric active control experiment of tail buffeting was performed in a wind tunnel u...Tail buffeting at high angle of attack causes distinct fatigue problem on tail structure of twin tail fighters.In this study,a piezoelectric active control experiment of tail buffeting was performed in a wind tunnel using arching PZT actuator(APA) and principal modal control(PMC) method.Test results showed the peak value of power spectral density(PSD) function of tail buffeting acceleration response could be suppressed by about 42% when the angle of attack reached 35°,indicating the validity and feasibility of PMC method and APA for tail buffeting alleviation at high angle of attack.展开更多
文摘将加速度负反馈(negative acceleration feedback,NAF)控制器与最小均方自适应滤波(filtered-x least mean square,FxLMS)算法相结合,提出了一种改进的反馈式次级通道阻尼补偿方法,来提高FxLMS控制器的性能。针对垂尾模型低阶模态抖振响应的控制问题,设计NAF控制器对次级通道进行反馈式阻尼补偿,建立了多模态的NAF-FxLMS控制器,随后开展垂尾抖振响应主动控制的地面模拟实验。实验结果表明,相比于单独的FxLMS控制器或NAF控制器,NAF-FxLMS控制器对垂尾抖振响应具有更好的控制效果。
基金supported by the National Natural Science Foundation of China(Grant No.11072199)
文摘Our research aim is to investigate the buffet alleviation effect of static or vibrating bulges attached on the forebody surface of the model.Experiments and numerical simulations on a model consisting of a sharp-edged,70°-leading edge sweep delta wing and twin swept back vertical tails were conducted.Models with different bulges were tested and computed at 10 and 20 m/s of free stream velocity at angles of attack ranging from 20°–50°.Dynamic strain gauge and multichannel data acquisition and analysis system were employed for the measurement of unsteady root strain on the vertical tails.Experimental and computational results show that both static and vibrating bulges behave effectively as a novel tool to alleviate tail buffet,and the alleviation effect depends largely on the vibrating frequency.Besides,one-sided bulge can only alleviate the buffeting response for the tail of the same side,and it has no obvious alleviation effect for the opposite tail.Results of the spectral analysis reveal that there are generally three peaks of spectral density for aircrafts of this configuration,and bulges used in this paper could alleviate tail buffeting,but the total lift and drag of the whole model show no obvious deviation compared to the base model and the dominant frequency of the vibration of the tails has not shifted.
基金supported by the National Natural Science Foundation of China (Grant No. 11072198)the Basic Research Program of Northwestern Polytechnical University (Grant No. JC201102) "111" Project(Grant No. B07050)
文摘Tail buffeting at high angle of attack causes distinct fatigue problem on tail structure of twin tail fighters.In this study,a piezoelectric active control experiment of tail buffeting was performed in a wind tunnel using arching PZT actuator(APA) and principal modal control(PMC) method.Test results showed the peak value of power spectral density(PSD) function of tail buffeting acceleration response could be suppressed by about 42% when the angle of attack reached 35°,indicating the validity and feasibility of PMC method and APA for tail buffeting alleviation at high angle of attack.