We explore how a two-mode squeezed vacuum state sechθeab tanh θ[00) evolves when it undergoes a single- mode amplitude dissipative channel with rate of decay k. We find that in this process not only the squeezing p...We explore how a two-mode squeezed vacuum state sechθeab tanh θ[00) evolves when it undergoes a single- mode amplitude dissipative channel with rate of decay k. We find that in this process not only the squeezing parameter decreases, tanhθ → e-kt tanh θ, but also the second-mode vacuum state evolves into a chaotic state exp{bbln[(1 - e-2kt) tanh2 θ]}. The outcome state is no more a pure state, but an entangled mixed state.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11047133 and 10647133)the Natural Science Foundation of Jiangxi Province of China (Grant Nos. 2009GQS0080 and 2010GQW0027)the Research Foundation of the Education Department of Jiangxi Province of China (Grant Nos. GJJ11339 and GJJ10097)
文摘We explore how a two-mode squeezed vacuum state sechθeab tanh θ[00) evolves when it undergoes a single- mode amplitude dissipative channel with rate of decay k. We find that in this process not only the squeezing parameter decreases, tanhθ → e-kt tanh θ, but also the second-mode vacuum state evolves into a chaotic state exp{bbln[(1 - e-2kt) tanh2 θ]}. The outcome state is no more a pure state, but an entangled mixed state.