This paper provides a comprehensive review on the research and development in multi-scale numerical modeling and simulation of PEM fuel cells. An overview of recent progress in PEM fuel cell modeling has been provided...This paper provides a comprehensive review on the research and development in multi-scale numerical modeling and simulation of PEM fuel cells. An overview of recent progress in PEM fuel cell modeling has been provided. Fundamental transport phenomena in PEM fuel cells and the corresponding mathematical formulation of macroscale models are analyzed. Various important issues in PEM fuel cell modeling and simulation are examined in detail, including fluid flow and species transport, electron and proton transport, heat transfer and thermal management, liquid water transport and water management, transient response behaviors, and cold-start processes. Key areas for further improvements have also been discussed.展开更多
A novel method to prepare an electrocatalyst with a new structure and high catalytic performance was reported. Two-dimensional(2 D) PtRu nanoclusters have been successfully deposited on graphene oxide and carbon bla...A novel method to prepare an electrocatalyst with a new structure and high catalytic performance was reported. Two-dimensional(2 D) PtRu nanoclusters have been successfully deposited on graphene oxide and carbon black supports. Compared with the commercial 3 D E-TEK PtRu samples, the prepared 2 D PtRu composites have larger electrochemically active surface area and display much higher catalytic activity toward methanol oxidation reaction. The preparation method mainly includes the following procedures: oxidation of carbon matrix, Pb^(2+) adsorption on the surface of carbon support, Pb^(2+) electrochemical reduction and galvanic displacement of Pb^0 by Pt^(2+) and Ru^(3+). The method developed in this study could be viable for solving the problem of low electrocatalytic activity in direct methanol fuel cell anodes.展开更多
An in-situ visualization of two-phase flow inside anode flow bed of a small liquid fed direct methanol fuel cells in normal and reduced gravity has been conducted in a drop tower.The anode flow bed con-sists of 11 par...An in-situ visualization of two-phase flow inside anode flow bed of a small liquid fed direct methanol fuel cells in normal and reduced gravity has been conducted in a drop tower.The anode flow bed con-sists of 11 parallel straight channels.The length,width and depth of single channel,which had rec-tangular cross section,are 48.0,2.5 and 2.0mm,respectively.The rib width was 2.0mm.The experi-mental results indicated that when the fuel cell orientation is vertical,two-phase flow pattern in anode channels can evolve from bubbly flow in normal gravity into slug flow in microgravity.The size of bub-bles in the reduced gravity is also bigger.In microgravity,the bubbles rising speed in vertical channels is obviously slower than that in normal gravity.When the fuel cell orientation is horizontal,the slug flow in the reduced gravity has almost the same characteristic with that in normal gravity.It implies that the effect of gravity on two-phase flow is small and the bubbles removal is governed by viscous drag.When the gas slugs or gas columns occupy channels,the performance of liquid fed direct methanol fuel cells is failing rapidly.It infers that in long-term microgravity,flow bed and operating condition should be optimized to avoid concentration polarization of fuel cells.展开更多
Based on the requirement of water management for a direct methanol fuel cell, this paper analyzes qualitatively the mechanism of occurrence and development of a two-phase countercurrent flow with corresponding transpo...Based on the requirement of water management for a direct methanol fuel cell, this paper analyzes qualitatively the mechanism of occurrence and development of a two-phase countercurrent flow with corresponding transport phenomenon in the PEM. A one-dimensional, steady state quantitative model of heat and mass transfer in internal volumetric ohmic heating porous media saturated by liquid and vapor phases is developed. The effects of capillarity, electro-osmotic drag and phase change are included. Two im-portant formulas to calculate the theoretical length of two-phase zone δ t and determine the critical criterion |?ω /γ |cr for dryout in PEM are deduced. By use of these two dimen-sionless parameters, dryout of PEM can be easily predicted. Theoretical temperature, pressure and saturation profiles within the two-phase region are obtained numerically, which can help to explore the performance of a DMFC operating in its ohmic polarization region. The simulation results can be used to determine the catalyst content of cathode catalyst layer and the corresponding optimal thickness of PEM.展开更多
All existing proton exchange membrane (PEM) fuel cell gas flow fields have been designed on the basis of single-phase gas flow distribution. The presence of liquid water in the flow causes non-uniform gas distributi...All existing proton exchange membrane (PEM) fuel cell gas flow fields have been designed on the basis of single-phase gas flow distribution. The presence of liquid water in the flow causes non-uniform gas distribution, leading to poor cell performance. This paper demonstrates that a gas flow restrictor/distributor, as is commonly used in two-phase flow to stabilize multiphase transport lines and multiphase reactors, can improve the gas flow distribution by significantly reducing gas real-distribution caused by either non-uniform water formation in parallel flow channels or flow instability associated with negative-slope pressure drop characteristic of two-phase horizontal flow systems.展开更多
基金supported by the National Natural Science Foundation of China (10972197)
文摘This paper provides a comprehensive review on the research and development in multi-scale numerical modeling and simulation of PEM fuel cells. An overview of recent progress in PEM fuel cell modeling has been provided. Fundamental transport phenomena in PEM fuel cells and the corresponding mathematical formulation of macroscale models are analyzed. Various important issues in PEM fuel cell modeling and simulation are examined in detail, including fluid flow and species transport, electron and proton transport, heat transfer and thermal management, liquid water transport and water management, transient response behaviors, and cold-start processes. Key areas for further improvements have also been discussed.
基金Funded by National Natural Science Foundation of China(Nos.21376069 and 21576075)Key Project in Hunan Science and Technology Pillar Program(No.2015WK3020)
文摘A novel method to prepare an electrocatalyst with a new structure and high catalytic performance was reported. Two-dimensional(2 D) PtRu nanoclusters have been successfully deposited on graphene oxide and carbon black supports. Compared with the commercial 3 D E-TEK PtRu samples, the prepared 2 D PtRu composites have larger electrochemically active surface area and display much higher catalytic activity toward methanol oxidation reaction. The preparation method mainly includes the following procedures: oxidation of carbon matrix, Pb^(2+) adsorption on the surface of carbon support, Pb^(2+) electrochemical reduction and galvanic displacement of Pb^0 by Pt^(2+) and Ru^(3+). The method developed in this study could be viable for solving the problem of low electrocatalytic activity in direct methanol fuel cell anodes.
基金Supported by the National Natural Science Foundation of China(Grant No. 50406010)Excellent Talents Programme of Beijing Municipality(Grant No. 20081D0501500167)
文摘An in-situ visualization of two-phase flow inside anode flow bed of a small liquid fed direct methanol fuel cells in normal and reduced gravity has been conducted in a drop tower.The anode flow bed con-sists of 11 parallel straight channels.The length,width and depth of single channel,which had rec-tangular cross section,are 48.0,2.5 and 2.0mm,respectively.The rib width was 2.0mm.The experi-mental results indicated that when the fuel cell orientation is vertical,two-phase flow pattern in anode channels can evolve from bubbly flow in normal gravity into slug flow in microgravity.The size of bub-bles in the reduced gravity is also bigger.In microgravity,the bubbles rising speed in vertical channels is obviously slower than that in normal gravity.When the fuel cell orientation is horizontal,the slug flow in the reduced gravity has almost the same characteristic with that in normal gravity.It implies that the effect of gravity on two-phase flow is small and the bubbles removal is governed by viscous drag.When the gas slugs or gas columns occupy channels,the performance of liquid fed direct methanol fuel cells is failing rapidly.It infers that in long-term microgravity,flow bed and operating condition should be optimized to avoid concentration polarization of fuel cells.
文摘Based on the requirement of water management for a direct methanol fuel cell, this paper analyzes qualitatively the mechanism of occurrence and development of a two-phase countercurrent flow with corresponding transport phenomenon in the PEM. A one-dimensional, steady state quantitative model of heat and mass transfer in internal volumetric ohmic heating porous media saturated by liquid and vapor phases is developed. The effects of capillarity, electro-osmotic drag and phase change are included. Two im-portant formulas to calculate the theoretical length of two-phase zone δ t and determine the critical criterion |?ω /γ |cr for dryout in PEM are deduced. By use of these two dimen-sionless parameters, dryout of PEM can be easily predicted. Theoretical temperature, pressure and saturation profiles within the two-phase region are obtained numerically, which can help to explore the performance of a DMFC operating in its ohmic polarization region. The simulation results can be used to determine the catalyst content of cathode catalyst layer and the corresponding optimal thickness of PEM.
基金support from the Natural Sciences and Engineering Research Council(NSERC) of Canada
文摘All existing proton exchange membrane (PEM) fuel cell gas flow fields have been designed on the basis of single-phase gas flow distribution. The presence of liquid water in the flow causes non-uniform gas distribution, leading to poor cell performance. This paper demonstrates that a gas flow restrictor/distributor, as is commonly used in two-phase flow to stabilize multiphase transport lines and multiphase reactors, can improve the gas flow distribution by significantly reducing gas real-distribution caused by either non-uniform water formation in parallel flow channels or flow instability associated with negative-slope pressure drop characteristic of two-phase horizontal flow systems.