Edge Computing is one of the radically evolving systems through generations as it is able to effectively meet the data saving standards of consumers,providers and the workers. Requisition for Edge Computing based ite...Edge Computing is one of the radically evolving systems through generations as it is able to effectively meet the data saving standards of consumers,providers and the workers. Requisition for Edge Computing based items havebeen increasing tremendously. Apart from the advantages it holds, there remainlots of objections and restrictions, which hinders it from accomplishing the needof consumers all around the world. Some of the limitations are constraints oncomputing and hardware, functions and accessibility, remote administration andconnectivity. There is also a backlog in security due to its inability to create a trustbetween devices involved in encryption and decryption. This is because securityof data greatly depends upon faster encryption and decryption in order to transferit. In addition, its devices are considerably exposed to side channel attacks,including Power Analysis attacks that are capable of overturning the process.Constrained space and the ability of it is one of the most challenging tasks. Toprevail over from this issue we are proposing a Cryptographic LightweightEncryption Algorithm with Dimensionality Reduction in Edge Computing. Thet-Distributed Stochastic Neighbor Embedding is one of the efficient dimensionality reduction technique that greatly decreases the size of the non-linear data. Thethree dimensional image data obtained from the system, which are connected withit, are dimensionally reduced, and then lightweight encryption algorithm isemployed. Hence, the security backlog can be solved effectively using thismethod.展开更多
How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle co...How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle component analysis(PCA) is the most widely-used linear dimensionality reduction method at present.However,the relationships between seismic attributes and reservoir features are non-linear,so seismic attribute dimensionality reduction based on linear transforms can't solve non-linear problems well,reducing reservoir prediction precision.As a new non-linear learning method,manifold learning supplies a new method for seismic attribute analysis.It can discover the intrinsic features and rules hidden in the data by computing low-dimensional,neighborhood-preserving embeddings of high-dimensional inputs.In this paper,we try to extract seismic attributes using locally linear embedding(LLE),realizing inter-horizon attributes dimensionality reduction of 3D seismic data first and discuss the optimization of its key parameters.Combining model analysis and case studies,we compare the dimensionality reduction and clustering effects of LLE and PCA,both of which indicate that LLE can retain the intrinsic structure of the inputs.The composite attributes and clustering results based on LLE better characterize the distribution of sedimentary facies,reservoir,and even reservoir fluids.展开更多
文摘Edge Computing is one of the radically evolving systems through generations as it is able to effectively meet the data saving standards of consumers,providers and the workers. Requisition for Edge Computing based items havebeen increasing tremendously. Apart from the advantages it holds, there remainlots of objections and restrictions, which hinders it from accomplishing the needof consumers all around the world. Some of the limitations are constraints oncomputing and hardware, functions and accessibility, remote administration andconnectivity. There is also a backlog in security due to its inability to create a trustbetween devices involved in encryption and decryption. This is because securityof data greatly depends upon faster encryption and decryption in order to transferit. In addition, its devices are considerably exposed to side channel attacks,including Power Analysis attacks that are capable of overturning the process.Constrained space and the ability of it is one of the most challenging tasks. Toprevail over from this issue we are proposing a Cryptographic LightweightEncryption Algorithm with Dimensionality Reduction in Edge Computing. Thet-Distributed Stochastic Neighbor Embedding is one of the efficient dimensionality reduction technique that greatly decreases the size of the non-linear data. Thethree dimensional image data obtained from the system, which are connected withit, are dimensionally reduced, and then lightweight encryption algorithm isemployed. Hence, the security backlog can be solved effectively using thismethod.
基金National Key Science & Technology Special Projects(Grant No.2008ZX05000-004)CNPC Projects(Grant No.2008E-0610-10).
文摘How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle component analysis(PCA) is the most widely-used linear dimensionality reduction method at present.However,the relationships between seismic attributes and reservoir features are non-linear,so seismic attribute dimensionality reduction based on linear transforms can't solve non-linear problems well,reducing reservoir prediction precision.As a new non-linear learning method,manifold learning supplies a new method for seismic attribute analysis.It can discover the intrinsic features and rules hidden in the data by computing low-dimensional,neighborhood-preserving embeddings of high-dimensional inputs.In this paper,we try to extract seismic attributes using locally linear embedding(LLE),realizing inter-horizon attributes dimensionality reduction of 3D seismic data first and discuss the optimization of its key parameters.Combining model analysis and case studies,we compare the dimensionality reduction and clustering effects of LLE and PCA,both of which indicate that LLE can retain the intrinsic structure of the inputs.The composite attributes and clustering results based on LLE better characterize the distribution of sedimentary facies,reservoir,and even reservoir fluids.