期刊文献+
共找到19,618篇文章
< 1 2 250 >
每页显示 20 50 100
Identifying the enhancement mechanism of Al/MoO_(3) reactive multilayered films on the ignition ability of semiconductor bridge using a one-dimensional gas-solid two-phase flow model
1
作者 Jianbing Xu Yuxuan Zhou +3 位作者 Yun Shen Yueting Wang Yinghua Ye Ruiqi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期168-179,共12页
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m... Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices. 展开更多
关键词 Ignition enhancement mechanism 1D gas-solid two-phase flow Al/MoO_(3)reactive multilayered films Semiconductor bridge Miniaturized ignition device
下载PDF
REVIEW ON MATHEMATICAL ANALYSIS OF SOME TWO-PHASE FLOW MODELS 被引量:3
2
作者 温焕尧 姚磊 朱长江 《Acta Mathematica Scientia》 SCIE CSCD 2018年第5期1617-1636,共20页
The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study o... The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study of compressible nonconservative two-fluid model, drift-flux model and viscous liquid-gas two-phase flow model. We give the research developments of these three two-phase flow models, respectively. In the last part, we give some open problems about the above models. 展开更多
关键词 compressible nonconservative two-fluid model drift-flux model viscous liquid-gas two-phase flow model WELL-POSEDNESS
下载PDF
Three-dimensional CFD simulation of inlet structure flow in pumping station based on Eulerian solid- liquid two-phase flow model
3
作者 Mi Zihao Zhou Daqing Mao Yuanting 《排灌机械工程学报》 EI CSCD 北大核心 2015年第6期494-498,共5页
Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- l... Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- liquid two-phase flow model. The numerical results of the preliminary scheme show that sediment deposition occurs in the forebay of pumping station because of poor flow pattern therein. In order to improve hydraulic configuration in the forebay,one modified measure reconstructs water diversion weir shape,and another measure sets a water retaining sill in the approach channel. The simulation results of the modified scheme prove that back flow in the forebay has been eliminated and the sediment deposition region has also been reduced. 展开更多
关键词 pumping station FOREBAY sediment deposition Eulerian two-phase flow model
下载PDF
Field experiment of rainfall infiltration on a soil slope and simulations based on a water-air two-phase flow model 被引量:1
4
作者 LIU Gang ZHA Xin-yuan +1 位作者 GUAN Jin-kun TONG Fu-guo 《Journal of Mountain Science》 SCIE CSCD 2021年第8期2159-2167,共9页
Rainfall infiltration on a soil slope is usually an unsaturated seepage process that can be described by a water-air two-phase flow model.The effect of pore air pressure on rainfall infiltration has been widely recogn... Rainfall infiltration on a soil slope is usually an unsaturated seepage process that can be described by a water-air two-phase flow model.The effect of pore air pressure on rainfall infiltration has been widely recognized and validated by means of numerical simulations and laboratory experiments.However,whether a slope can actually seal pore air continues to be debated by researchers.In this study,a water-air two-phase flow model is used to simulate the rainfall infiltration process on a soil slope,and a field experiment is conducted to realistically test the sealing conditions of a slope.According to the numerical simulation,the areas of water and air flow in and out on the slope surface are relatively stable and can be classified as the“inhalation zone”and“overflow zone”,respectively.Intermittent rainfall on the soil slope has an amplifying effect on pore air pressure because rainfall intensity is usually at the millimeter level,and it causes pore air pressure to reach the cm level.A field experiment was performed to determine whether a slope can realistically seal pore air and subsequently verify the regularity of rainfall infiltration.Air pressure sensors were buried in the slope to monitor the pore air pressures during the rainfall process.The monitoring results show that the pore air pressure in the slope changed,which indicates that the slope can seal air.Moreover,the amplification effects of intermittent rainfall on pore air pressure were observed for natural rainfall,which agrees well with the numerical simulation results. 展开更多
关键词 Rainfall infiltration Runoff regularity Field experiment Water-air two-phase flow
下载PDF
CFD studies of scraper built in SPA clarifying tank based on mixture solid-liquid two-phase flow model 被引量:1
5
作者 CHEN Yu ZHOU Jianxu ZHANG Zhengyang 《排灌机械工程学报》 EI CSCD 北大核心 2018年第7期553-559,586,共8页
In the industrial process of producing the strong phosphoric acid(SPA),clarification of the solution is essential to the ultimate product.However,the large viscosity of sediment and the induced interface interaction r... In the industrial process of producing the strong phosphoric acid(SPA),clarification of the solution is essential to the ultimate product.However,the large viscosity of sediment and the induced interface interaction result in difficulties when the SPA is clarified.CFD numerical methodology was applied to simulate internal flow field and performance of the low speed scraper based on Mixture solidliquid two-phase flow model.Sediment deposition was generated by loading solid particles at the bottom of clarifying vessel.The moving mesh and RNG k-εmodel were used to simulate the rotational turbulent flow in clarifying tank.Variables studied,amongst others,were the scraper rotation speed and the mounting height,which could affect the solid suspension height.Features of flow field and solid volume fraction distribution in computational domain were presented and analyzed.The numerical reports of the scraper torque and velocities of inlet and outlet filed were obtained.It seems the torque value of rotatio-nal axis and particle suspending height augment with an increasing rotating speed.Meanwhile,a high revolving speed is good for the deposition discharge.The particle fraction distribution in meridional surface and horizontal surface at fixed rotation speed were analyzed to determine the corresponding optimal installation height.The simulating results reflect the flow field is marginally stirred by the scraper and proper working parameters are obtained,in which case the comprehensive properties of the scraper and the clarifying tank are superior. 展开更多
关键词 strong phosphoric acid clarifying TANK SCRAPER MIXTURE two-phase model GRANULAR SUSPENSION computational fluid dynamics
下载PDF
Existence and Nonlinear Stability of Stationary Solutions to the Viscous Two-Phase Flow Model in a Half Line
6
作者 Hai-Liang Li Shuang Zhao 《Communications in Mathematical Research》 CSCD 2020年第4期423-459,共37页
The outflow problem for the viscous two-phase flow model in a half line is investigated in the present paper.The existence and uniqueness of the stationary solution is shown for both supersonic state and sonic state a... The outflow problem for the viscous two-phase flow model in a half line is investigated in the present paper.The existence and uniqueness of the stationary solution is shown for both supersonic state and sonic state at spatial far field,and the nonlinear time stability of the stationary solution is also established in the weighted Sobolev space with either the exponential time decay rate for supersonic flow or the algebraic time decay rate for sonic flow. 展开更多
关键词 two-phase flow outflow problem stationary solution nonlinear stability.
下载PDF
Global Existence of Solutions for Baer-Nunziato Two-Phase Flow Model in a Bounded Domain
7
作者 Wenhui Kou 《Open Journal of Applied Sciences》 2022年第4期631-649,共19页
In this paper, we study the global existence and uniqueness of strong solutions for the Baer-Nunziato two-phase flow model in a bounded domain with a no-slip boundary. The global existence and uniqueness of strong sol... In this paper, we study the global existence and uniqueness of strong solutions for the Baer-Nunziato two-phase flow model in a bounded domain with a no-slip boundary. The global existence and uniqueness of strong solutions are obtained when the initial value is near the equilibrium state in H<sup>2</sup> (&#937;). Furthermore, the exponential convergence rates of the pressure and velocity are also proved by delicate energy methods. 展开更多
关键词 two-phase model Bounded Domain Global Existence Energy Method
下载PDF
Two-Phase Flow Modeling in a Single Closed Loop Pulsating Heat Pipes
8
作者 杨洪海 Sameer Khandekar +1 位作者 Sanka V. V.S. N.S. Manyam Manfred Groll 《Journal of Donghua University(English Edition)》 EI CAS 2007年第4期439-444,共6页
Mathematical modeling of pulsating heat pipes through ‘first’ principles is a contemporary problem which remains quite elusive. Simplifications and assumptions made in all the modeling approaches developed so far re... Mathematical modeling of pulsating heat pipes through ‘first’ principles is a contemporary problem which remains quite elusive. Simplifications and assumptions made in all the modeling approaches developed so far render them unsuitable for engineering design. In this paper, a more realistic modeling scheme is presented which provides considerable try for thought toward the next progressive step. At high enough heat flux level, closed loop pulsating heat pipes experience a bulk internal unidirectional fluid circulation. Under such a condition, conventional two-phase flow modeling in capillary tubes may be applied. This has been attempted for single-loop PHPs. A homogeneous model and a separated two-fluid flow model based on simultaneous conservation of mass, momentum and energy, have been developed for an equivalent ‘open flow’ system. The model allows prediction of two-phase flow parameters in each sub-section of the device thereby providing important insights into its operation. The concept of ‘void fraction constraint’ in pulsating heat pipe operation is introduced and its relevance to future modeling attempts is outlined. 展开更多
关键词 闭环振动热管 二相流 流体动力学 数学模型
下载PDF
Arbitrary High-Order Fully-Decoupled Numerical Schemes for Phase-Field Models of Two-Phase Incompressible Flows
9
作者 Ruihan Guo Yinhua Xia 《Communications on Applied Mathematics and Computation》 EI 2024年第1期625-657,共33页
Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the... Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows. 展开更多
关键词 two-phase incompressible flows Fully-decoupled High-order accurate Linear implicit Spectral deferred correction method Local discontinuous Galerkin method
下载PDF
Evaluation of frictional pressure drop correlations for air-water and air-oil two-phase flow in pipeline-riser system
10
作者 Nai-Liang Li Bin Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1305-1319,共15页
Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ... Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop. 展开更多
关键词 Frictional pressure drop Pipeline-riser Gas-liquid two-phase flow Severe slugging CORRELATION
下载PDF
Pressure transient characteristics of non-uniform conductivity fractured wells in viscoelasticity polymer flooding based on oil-water two-phase flow
11
作者 Yang Wang Jia Zhang +2 位作者 Shi-Long Yang Ze-Xuan Xu Shi-Qing Cheng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期343-351,共9页
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni... Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves. 展开更多
关键词 Polymer flooding Non-Newtonian fluid Non-uniform fracture conductivity two-phase flow Pressure transient analysis
下载PDF
Integrated numerical simulation of hydraulic fracturing and production in shale gas well considering gas-water two-phase flow
12
作者 TANG Huiying LUO Shangui +4 位作者 LIANG Haipeng ZENG Bo ZHANG Liehui ZHAO Yulong SONG Yi 《Petroleum Exploration and Development》 SCIE 2024年第3期684-696,共13页
Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale... Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model. 展开更多
关键词 shale gas well hydraulic fracturing fracture propagation gas-water two-phase flow fracturing-production integrated numerical simulation
下载PDF
Numerical modeling and parametric sensitivity analysis of heat transfer and two-phase oil and water flow characteristics in horizontal and inclined flowlines using OpenFOAM 被引量:1
13
作者 Nsidibe Sunday Abdelhakim Settar +1 位作者 Khaled Chetehouna Nicolas Gascoin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1183-1199,共17页
Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to ... Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to the temperature difference between the fluids and the surroundings. Heat transfer analysis is very important for the prediction and prevention of deposits in oil and water flowlines, which could impede the flow and give rise to huge financial losses. Therefore, a 3D mathematical model of oil-water Newtonian flow under non-isothermal conditions is established to explore the complex mechanisms of the two-phase oil-water transportation and heat transfer in different flowline inclinations. In this work, a non-isothermal two-phase flow model is first modified and then implemented in the InterFoam solver by introducing the energy equation using OpenFOAM® code. The Low Reynolds Number (LRN) k-ε turbulence model is utilized to resolve the turbulence phenomena within the oil and water mixtures. The flow patterns and the local heat transfer coefficients (HTC) for two-phase oil-water flow at different flowlines inclinations (0°, +4°, +7°) are validated by the experimental literature results and the relative errors are also compared. Global sensitivity analysis is then conducted to determine the effect of the different parameters on the performance of the produced two-phase hydrocarbon systems for effective subsea fluid transportation. Thereafter, HTC and flow patterns for oil-water flows at downward inclinations of 4°, and 7° can be predicted by the models. The velocity distribution, pressure gradient, liquid holdup, and temperature variation at the flowline cross-sections are simulated and analyzed in detail. Consequently, the numerical model can be generally applied to compute the global properties of the fluid and other operating parameters that are beneficial in the management of two-phase oil-water transportation. 展开更多
关键词 flow assurance flow pattern Heat transfer flowlines two-phase flow Global sensitivity analysis
下载PDF
Comprehensive modeling of frictional pressure drop during carbon dioxide two-phase flow inside channels using intelligent and conventional methods
14
作者 Mohammad Amin Moradkhani Seyyed Hossein Hosseini Mengjie Song 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期108-119,共12页
Environmentally friendly nature of CO_(2),associated with its safety and high efficiency,has made it a widely used working fluid in heat exchangers.Since CO_(2)has strange thermophysical features,specific models are r... Environmentally friendly nature of CO_(2),associated with its safety and high efficiency,has made it a widely used working fluid in heat exchangers.Since CO_(2)has strange thermophysical features,specific models are required to estimate its two-phase characteristics,particularly frictional pressure drop(FPD).Herein,a widespread dataset,comprising 1195 experimental samples for two-phase FPD of CO_(2)was adopted from 10 sources to fulfill this requirement.The literature correlations failed to provide satisfactory precisions and exhibited the average absolute relative errors(AAREs)between 29.29% and 67.69% from the analyzed data.By inspiring the theoretical method of Lockhart and Martinelli,three intelligent FPD models were presented,among which the Gaussian process regression approach surpassed the others with AARE and R^(2)values of 5.48% and 98.80%,respectively in the test stage.A novel simple correlation was also derived based on the least square fitting method,which yielded opportune predictions with AARE of 19.76% for all data.The truthfulness of the newly proposed models was assessed through a variety of statistical and visual analyses,and the results affirmed their high reliability over a broad range of conditions,channel sizes and flow patterns.Furthermore,the novel models performed favorably in describing the physical attitudes corresponding to two-phase FPD of CO_(2).Eventually,the importance of operating factors in controlling the FPD was discussed through a sensitivity analysis. 展开更多
关键词 CO_(2) two-phase flow Frictional pressuredrop Intelligent approaches CORRELATION
下载PDF
WT-FCTGN:A wavelet-enhanced fully connected time-gated neural network for complex noisy traffic flow modeling
15
作者 廖志芳 孙轲 +3 位作者 刘文龙 余志武 刘承光 宋禹成 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期652-664,共13页
Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produce... Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produced during collecting information and summarizing original data of traffic flow, cause large errors in the traffic flow forecasting results. This article suggests a solution to the above mentioned issues and proposes a fully connected time-gated neural network based on wavelet reconstruction(WT-FCTGN). To eliminate the potential noise and strengthen the potential traffic trend in the data, we adopt the methods of wavelet reconstruction and periodic data introduction to preprocess the data. The model introduces fully connected time-series blocks to model all the information including time sequence information and fluctuation information in the flow of traffic, and establishes the time gate block to comprehend the periodic characteristics of the flow of traffic and predict its flow. The performance of the WT-FCTGN model is validated on the public Pe MS data set. The experimental results show that the WT-FCTGN model has higher accuracy, and its mean absolute error(MAE), mean absolute percentage error(MAPE) and root mean square error(RMSE) are obviously lower than those of the other algorithms. The robust experimental results prove that the WT-FCTGN model has good anti-noise ability. 展开更多
关键词 traffic flow modeling time-series wavelet reconstruction
下载PDF
A new interacting capillary bundle model on the multiphase flow in micropores of tight rocks
16
作者 Wen-Quan Deng Tian-Bo Liang +3 位作者 Wen-Zhong Wang Hao Liu Jun-Lin Wu Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1099-1112,共14页
Surfactants are widely used in the fracturing fluid to enhance the imbibition and thus the oil recovery rate. However, current numerical models cannot capture the physics behind capillary imbibition during the wettabi... Surfactants are widely used in the fracturing fluid to enhance the imbibition and thus the oil recovery rate. However, current numerical models cannot capture the physics behind capillary imbibition during the wettability alteration by surfactants. Although the interacting capillary bundle(ICB) model shows potential in characterizing imbibition rates in different pores during wettability alteration, the existing ICB models neglect the influence of wettability and viscosity ratio on the imbibition behavior, making it difficult to accurately describe the oil-water imbibition behavior within the porous media. In this work,a new ICB mathematical model is established by introducing pressure balance without assuming the position of the leading front to comprehensively describe the imbibition behavior in a porous medium under different conditions, including gas-liquid spontaneous imbibition and oil-water imbibition.When the pore size distribution of a tight rock is known, this new model can predict the changes of water saturation during the displacement process in the tight rock, and also determine the imbibition rate in pores of different sizes. The water saturation profiles obtained from the new model are validated against the waterflooding simulation results from the CMG, while the imbibition rates calculated by the model are validated against the experimental observations of gas-liquid spontaneous imbibition. The good match above indicates the newly proposed model can show the water saturation profile at a macroscopic scale while capture the underlying physics of the multiphase flow in a porous medium at a microscopic scale. Simulation results obtained from this model indicate that both wettability and viscosity ratio can affect the sequence of fluid imbibition into pores of different sizes during the multiphase flow, where less-viscous wetting fluid is preferentially imbibed into larger pores while more-viscous wetting fluid tends to be imbibed into smaller pores. Furthermore, this model provides an avenue to calculate the imbibition rate in pores of different sizes during wettability alteration and capture the non-Darcy effect in micro-and nano-scale pores. 展开更多
关键词 Imbibition Multiphase flow Tight rock Interacting capillary bundle model Wettability
下载PDF
Dynamic-based model for calculating the boulder impact force in debris flow
17
作者 YANG Chaoping ZHANG Shaojie +2 位作者 YIN Yueping YANG Hongjuan WEI Fangqiang 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1930-1940,共11页
The boulder impact force in debris flow is generally calculated by static methods such as the cantilever beam models.However,these methods cannot describe the dynamic scenario of boulder collision on structures,so the... The boulder impact force in debris flow is generally calculated by static methods such as the cantilever beam models.However,these methods cannot describe the dynamic scenario of boulder collision on structures,so the inertia and damping effects of the structures are not involved causing an overestimation on the boulder impact force.In order to address this issue,a dynamic-based model for calculating the boulder impact force of a debris flow was proposed in this study,and the dynamic characteristics of a cantilever beam with multiple degrees of freedom under boulder collision were investigated.By using the drop-weight method to simulate boulders within debris flow,seven experiments of drop-weight impacting the cantilever beam were used to calibrate the error of the dynamicbased model.Results indicate that the dynamic-based model is able to reconstruct the impact force history on the cantilever beam during impact time and the error of dynamic-based model is 15.3%in calculating boulder impact force,significantly outperforming the cantilever beam model’s error of 285%.Therefore,the dynamic-based model can overcome the drawbacks of the static-based models and provide a more reliable theoretical foundation for the engineering design of debris flow control structures. 展开更多
关键词 Debris flow Impact force Boulder collision Dynamic-based model Engineering design
下载PDF
An extended social force model on unidirectional flow considering psychological and behavioral impacts of hazard source
18
作者 邓凯丰 李梦 +1 位作者 胡祥敏 陈涛 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期567-576,共10页
An accurate assessment of the evacuation efficiency in case of disasters is of vital importance to the safety design of buildings and street blocks.Hazard sources not only physically but psychologically affect the ped... An accurate assessment of the evacuation efficiency in case of disasters is of vital importance to the safety design of buildings and street blocks.Hazard sources not only physically but psychologically affect the pedestrians,which may further alter their behavioral patterns.This effect is especially significant in narrow spaces,such as corridors and alleys.This study aims to integrate a non-spreading hazard source into the social force model following the results from a previous experiment and simulation,and to simulate unidirectional pedestrian flows over various crowd densities and clarity–intensity properties of the hazard source.The integration include a virtual repulsion force from the hazard source and a decay on the social force term.The simulations reveal(i)that the hazard source creates virtual bottlenecks that suppress the flow,(ii)that the inter-pedestrian push forms a stabilisation phase on the flow-density curve within medium-to-high densities,and(iii)that the pedestrians are prone to a less orderly and stable pattern of movement in low clarity–intensity scenarios,possibly with lateral collisions passing the hazard source. 展开更多
关键词 EVACUATION social force model hazard source unidirectional pedestrian flow
下载PDF
A new evolutional model for institutional field knowledge flow network
19
作者 Jinzhong Guo Kai Wang +1 位作者 Xueqin Liao Xiaoling Liu 《Journal of Data and Information Science》 CSCD 2024年第1期101-123,共23页
Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose... Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose is to simulate the construction process of a knowledge flow network using knowledge organizations as units and to investigate its effectiveness in replicating institutional field knowledge flow networks.Design/Methodology/Approach:The IKM model enhances the preferential attachment and growth observed in scale-free BA networks,while incorporating three adjustment parameters to simulate the selection of connection targets and the types of nodes involved in the network evolution process Using the PageRank algorithm to calculate the significance of nodes within the knowledge flow network.To compare its performance,the BA and DMS models are also employed for simulating the network.Pearson coefficient analysis is conducted on the simulated networks generated by the IKM,BA and DMS models,as well as on the actual network.Findings:The research findings demonstrate that the IKM model outperforms the BA and DMS models in replicating the institutional field knowledge flow network.It provides comprehensive insights into the evolution mechanism of knowledge flow networks in the scientific research realm.The model also exhibits potential applicability to other knowledge networks that involve knowledge organizations as node units.Research Limitations:This study has some limitations.Firstly,it primarily focuses on the evolution of knowledge flow networks within the field of physics,neglecting other fields.Additionally,the analysis is based on a specific set of data,which may limit the generalizability of the findings.Future research could address these limitations by exploring knowledge flow networks in diverse fields and utilizing broader datasets.Practical Implications:The proposed IKM model offers practical implications for the construction and analysis of knowledge flow networks within institutions.It provides a valuable tool for understanding and managing knowledge exchange between knowledge organizations.The model can aid in optimizing knowledge flow and enhancing collaboration within organizations.Originality/value:This research highlights the significance of meso-level studies in understanding knowledge organization and its impact on knowledge flow networks.The IKM model demonstrates its effectiveness in replicating institutional field knowledge flow networks and offers practical implications for knowledge management in institutions.Moreover,the model has the potential to be applied to other knowledge networks,which are formed by knowledge organizations as node units. 展开更多
关键词 Knowledge flow networks Evolutionary mechanism BA model Knowledge units
下载PDF
Modeling of multiphase flow in low permeability porous media:Effect of wettability and pore structure properties
20
作者 Xiangjie Qin Yuxuan Xia +3 位作者 Juncheng Qiao Jiaheng Chen Jianhui Zeng Jianchao Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1127-1139,共13页
Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the ef... Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery. 展开更多
关键词 Low permeability porous media Water-oil flow WETTABILITY Pore structures Dual porosity pore network model(PNM) Free surface model
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部