Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate...Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate was investigated. The microstructure and mechanical properties of the TZCC alloy plate were analyzed. The results show that Cu-4.7%Sn alloy plate with smooth surface can be obtained by means of reasonable matching the entrance temperature of two-phase zone mold and the continuous casting speed. The microstructure of the TZCC alloy is composed of grains-covered grains, small grains with self-closed grain boundaries, columnar grains and equiaxed grains. Compared with cold mold continuous casting Cu-4.7%Sn alloy plate, the room temperature tensile strength and ductility of the TZCC alloy plate are greatly improved.展开更多
The present study has been carried out on a total of 50 available plant species to assess their dust-capturing capacity and biochemical performances in and around open cast granite mine areas of Jhansi district and Bu...The present study has been carried out on a total of 50 available plant species to assess their dust-capturing capacity and biochemical performances in and around open cast granite mine areas of Jhansi district and Bundelkhand University campus treated as control site. Plant species existing under a polluted environment for a long time may be considered as potentially resistant species and recommended for green belt design in mining areas, especially to cope with dust pollution. Results showed the pollution level, especially of mining-originated dust particles holding capacity of leaves and effects of different biochemical parameters (Total Chlorophyll, Protein and Carotenoid) of existing plant species both from mining areas as well as from Bundelkhand University campus. Based on their performances, Tectona grandis L., Ficus hispida L., Calotropis procera Aiton., Butea monosperma Lam. and Ficus benghalensis L., etc. are highly tolerant species while Ficus infectoria L., Artocarpus heterophyllus Lam., Ipomoea purpurea L., Allianthus excelsa Roxb. and Bauhinia variegata L. are intermediate tolerant species. T. grandis had shown the highest dust-holding capacity (2.566 ± 0.0004 mg/cm2) whereas Albizia procera (0.018 ± 0.0002 mg/cm2) was found to be the lowest dust-holding capacity. Our findings also showed that the T. grandis and F. hispida have significant dust deposition with minimal effect of dust on their leaf chlorophyll (17.447 ± 0.019 mg/g and 14.703 ± 0.201 mg/g), protein (0.699 ± 0.001 mg/g and 0.604 ± 0.002 mg/g) and carotenoid (0.372 ± 0.003 mg/g and 0.354 ± 0.003 mg/g) content respectively among all selected plant species. Therefore, in the present investigation, plant species with high tolerance to high dust-holding capacity on their leaf surfaces are preferable for green corridors as open cast granite mines and their adjacent areas.展开更多
The two-phase zone continuous casting(TZCC)technique was used to continuously cast high-strength aluminum alloy hollow billets,and a verified 3D model of TZCC was used to simulate the flow and temperature fields at ca...The two-phase zone continuous casting(TZCC)technique was used to continuously cast high-strength aluminum alloy hollow billets,and a verified 3D model of TZCC was used to simulate the flow and temperature fields at casting speeds of 2-6 mm·min^(-1).Hollow billets under the same conditions were prepared,and their macro/microstructures were analyzed by an optical microscope and a scanning electron microscope.During the TZCC process,a circular fluid flow appears in front of the mushy zone,and the induction heated stepped mold and convective heat transfer result in a curved solidification front with depressed region near the inner wall and a vertical temperature gradient.The deflection of the solidification front decreases and the average cooling rate in the mushy zone increases with increasing casting speed.Experimental results for a 2D12 alloy show that hot tearing periodically appears in the hollow billet accompanied by macrosegregation near the inner wall at casting speeds of 2 and 4 mm·min^(-1),while macroscopic defects of hot tearing and macrosegregation weaken and the average size of columnar crystals in the hollow billets decreases with further increasing casting speed.2D12 aluminum alloy hollow billets with no macroscopic defects,the finest columnar crystals,and excellent mechanical properties were prepared by TZCC at a casting speed of 6 mm·min^(-1),which is beneficial for the further plastic forming process.展开更多
According to the theory of alternating magnetohydrodynamics and magnetic boundary renewal method,mathematical models were proposed for electromagnetic stirring in secondary cooling region( SEMS) of slab caster. The ma...According to the theory of alternating magnetohydrodynamics and magnetic boundary renewal method,mathematical models were proposed for electromagnetic stirring in secondary cooling region( SEMS) of slab caster. The magnetic fields and flow fields of melt were simulated with SEMS. It's shown that the electromagnetic forces with inward and sidelong components produced by travel magnetic field at the wide faces of slab make the melt whirling in horizontal section,and the convection of the melt is strengthened obviously there. In addition,magnetic flux density attenuates from the edge to the center of slab,and the profile of the melt velocity along slab thickness in the center of the horizontal section takes a two-opposite-peak configuration. Ultimately,the stirring intensity and features are determined by the electromagnetic parameters,coil arrangement and stirring types.展开更多
The effects of various factors on the flow speed of interdendritic melt were analyzed in detail in the process of continuous casting slabs. When the solid-liquid interface bends periodically, the expression of solute ...The effects of various factors on the flow speed of interdendritic melt were analyzed in detail in the process of continuous casting slabs. When the solid-liquid interface bends periodically, the expression of solute distribution in the columnar crystal zone was deduced, and the quantitative calculation was also made. The results show that the bulge and the interdendritic spacing are responsible for the flow speed of interdendritic melt. At the initial stage of solidification the bulge operates, and at the final stage the interdendritic spacing operates. The experimental results of macrosegregation in the slabs validated the calculated results of the flow speed of interdendritic melt, which shows that the calculated results are basically consistent with the experimental ones.展开更多
In lost foam casting(LFC)the foam pattern is the key criterion,and the filling process is crucialto ensure the high quality of the foam pattern.Filling which lacks uniformity and denseness will cause variousdefects an...In lost foam casting(LFC)the foam pattern is the key criterion,and the filling process is crucialto ensure the high quality of the foam pattern.Filling which lacks uniformity and denseness will cause variousdefects and affect the surface quality of the casting.The influential factors of the filling process are realized in thisresearch.Optimization of the filling process,enhancement of efficiency,decrease of waste,etc.,are obtained bythe numerical simulation of the filling process using a computer.The equations governing the dense gas-solid two-phase flow are established,and the physical significanceof each equation is discussed.The Euler/Lagrange numerical model is used to simulate the fluid dynamiccharacteristics of the dense two-phase flow during the mould filling process in lost foam casting.The experimentsand numerical results showed that this method can be a very promising tool in the mould filling simulation of beads’movement.展开更多
Reducing wear on a side dam can prolong the casting operation life of a twin-roll strip casting process,thus reducing production cost and improving casting stability.To lengthen the service life of the side dam,it is ...Reducing wear on a side dam can prolong the casting operation life of a twin-roll strip casting process,thus reducing production cost and improving casting stability.To lengthen the service life of the side dam,it is necessary to understand the wear performance of the side dam material.To investigate the wear behavior mechanism of the side dam,in this study,the UMT-2 friction and wear tester was used to determine the relationship between the wear rate of the side-dam material and various parameters.Based on the roughness of the contact area between the side dam and the end of the casting rolls as well as on the amount of deformation of the side dam,which was derived using a thermal-deformation simulation model,the reasons for the uneven wear of the side dam were obtained.展开更多
The centerline segregation in continuous casting steel is known to be formed by the interdendritic enriched liquid flow at the solidification end in strand.At present,several methods,such as thermal soft reduction, el...The centerline segregation in continuous casting steel is known to be formed by the interdendritic enriched liquid flow at the solidification end in strand.At present,several methods,such as thermal soft reduction, electromagnetic stirring and dynamic soft reduction,are available to reduce the center segregation and to improve the internal quality.Although some methods could alleviate center segregation to some extent,they can also give rise to new problems.For instance,thermal soft reduction can lead to surface cracking during casting of some steels and electromagnetic stirring can result in white band.Dynamic soft reduction is an effective technology for the improvement of strand quality in continuous slab casting.In this paper,the key parameters of dynamic soft reduction technology,such as soft reduction region,the total reduction amount,for low carbon steel have been studied based on experimental and theoretical analysis.The soft reduction region was related to the segregation of chemical composition,slab bulging of narrow side and avoiding internal crack of slab.The total reduction amount was composed of natural thermal shrinkage and actual reduction amount depending on critical strain.For low carbon steel with slab dimension of(950 - 1 950) mm×170 mm,the solid fraction range in soft reduction region was recommended from 0.4 to 0.8,the total reduction amount was 2.0 -2.8 mm,and the optimized reduction rate was 0.4 - 1.2 mm/min,respectively.Furthermore,a dynamic soft reduction system in continuous slab casting, Visual Cast-Dynamic,has been developed by multithreading method.It demonstrated that the dynamic soft reduction model in this study was correct with the ability of online control.展开更多
In order to overcome the zigzag grids generated by conventional finite difference method on complicated casting boundaries in the simulation of casting process, the generation program for 2-D boundary-fitted coordinat...In order to overcome the zigzag grids generated by conventional finite difference method on complicated casting boundaries in the simulation of casting process, the generation program for 2-D boundary-fitted coordinate grid has been developed by solving a set of partial differential equations (PDE) numerically. The STL format files were treated as input data for 2-D physical regions. The equipartition method for boundary points was used to improve the self-adaptability of grid according to the characteristic of the STL format files. The program was demonstrated through some examples. The comparison between the conventional finite difference method and the proposed method shows that this program is effective and flexible for generation of boundary-fitted grid in any arbitrary 2-D complex domain, and the grid is in accordance with the variety of boundary curvature finely. The program also provides two types of boundary-fitted grids for double-connected region, O-type and C-type. The limitation of the step-like boundary with the rectangle grid could be avoided effectively. Therefore, the computational accuracy and efficiency would be improved and the computational time would be saved significantly by the application of boundary-fitted grids.展开更多
Air entrapped in liquid metal during the mold filling process seriously affects the casting quality, thus it is important to track its behavior in the mold cavity. A liquid-gas two-phase flow model is developed to des...Air entrapped in liquid metal during the mold filling process seriously affects the casting quality, thus it is important to track its behavior in the mold cavity. A liquid-gas two-phase flow model is developed to describe the mold filling process and predict the air entrapment defect. The model is based on the combination of SOLA and Level Set Method. The pressure and velocity fields are calculated by SOLA,and the interface movement is simulated by Level Set method as the most common interface tracking method in recent years.In order to validate the feasibility of the model,the liquid-gas two-phase simulation results were tested by the broken dam problem and the S-shaped experiment. Comparison between the experiments and simulation results show that Level Set method might be a very promising tool in two-phase flow simulation during the mold filling process.展开更多
基金Project(51374025) supported by the National Natural Science Foundation of ChinaProject(2014Z-05) supported by the State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing,ChinaProject(2152020) supported by the Beijing Natural Science Foundation,China
文摘Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate was investigated. The microstructure and mechanical properties of the TZCC alloy plate were analyzed. The results show that Cu-4.7%Sn alloy plate with smooth surface can be obtained by means of reasonable matching the entrance temperature of two-phase zone mold and the continuous casting speed. The microstructure of the TZCC alloy is composed of grains-covered grains, small grains with self-closed grain boundaries, columnar grains and equiaxed grains. Compared with cold mold continuous casting Cu-4.7%Sn alloy plate, the room temperature tensile strength and ductility of the TZCC alloy plate are greatly improved.
文摘The present study has been carried out on a total of 50 available plant species to assess their dust-capturing capacity and biochemical performances in and around open cast granite mine areas of Jhansi district and Bundelkhand University campus treated as control site. Plant species existing under a polluted environment for a long time may be considered as potentially resistant species and recommended for green belt design in mining areas, especially to cope with dust pollution. Results showed the pollution level, especially of mining-originated dust particles holding capacity of leaves and effects of different biochemical parameters (Total Chlorophyll, Protein and Carotenoid) of existing plant species both from mining areas as well as from Bundelkhand University campus. Based on their performances, Tectona grandis L., Ficus hispida L., Calotropis procera Aiton., Butea monosperma Lam. and Ficus benghalensis L., etc. are highly tolerant species while Ficus infectoria L., Artocarpus heterophyllus Lam., Ipomoea purpurea L., Allianthus excelsa Roxb. and Bauhinia variegata L. are intermediate tolerant species. T. grandis had shown the highest dust-holding capacity (2.566 ± 0.0004 mg/cm2) whereas Albizia procera (0.018 ± 0.0002 mg/cm2) was found to be the lowest dust-holding capacity. Our findings also showed that the T. grandis and F. hispida have significant dust deposition with minimal effect of dust on their leaf chlorophyll (17.447 ± 0.019 mg/g and 14.703 ± 0.201 mg/g), protein (0.699 ± 0.001 mg/g and 0.604 ± 0.002 mg/g) and carotenoid (0.372 ± 0.003 mg/g and 0.354 ± 0.003 mg/g) content respectively among all selected plant species. Therefore, in the present investigation, plant species with high tolerance to high dust-holding capacity on their leaf surfaces are preferable for green corridors as open cast granite mines and their adjacent areas.
基金the National Natural Science Foundation of China(No.U1703131,No.51674027,No.51974027 and No.52004028)Guangdong Basic and Applied Basic Research Foundation(2019A1515111126)the Fundamental Research Funds for the Central Universities(FRF-TP-18-005C1 and FRF-TP-18-041A1).
文摘The two-phase zone continuous casting(TZCC)technique was used to continuously cast high-strength aluminum alloy hollow billets,and a verified 3D model of TZCC was used to simulate the flow and temperature fields at casting speeds of 2-6 mm·min^(-1).Hollow billets under the same conditions were prepared,and their macro/microstructures were analyzed by an optical microscope and a scanning electron microscope.During the TZCC process,a circular fluid flow appears in front of the mushy zone,and the induction heated stepped mold and convective heat transfer result in a curved solidification front with depressed region near the inner wall and a vertical temperature gradient.The deflection of the solidification front decreases and the average cooling rate in the mushy zone increases with increasing casting speed.Experimental results for a 2D12 alloy show that hot tearing periodically appears in the hollow billet accompanied by macrosegregation near the inner wall at casting speeds of 2 and 4 mm·min^(-1),while macroscopic defects of hot tearing and macrosegregation weaken and the average size of columnar crystals in the hollow billets decreases with further increasing casting speed.2D12 aluminum alloy hollow billets with no macroscopic defects,the finest columnar crystals,and excellent mechanical properties were prepared by TZCC at a casting speed of 6 mm·min^(-1),which is beneficial for the further plastic forming process.
基金Item Sponsored by National Key Fundamental Research Development Project of China(G1998061510)National High Technology Research and Development Project of China(2001AA337040)
文摘According to the theory of alternating magnetohydrodynamics and magnetic boundary renewal method,mathematical models were proposed for electromagnetic stirring in secondary cooling region( SEMS) of slab caster. The magnetic fields and flow fields of melt were simulated with SEMS. It's shown that the electromagnetic forces with inward and sidelong components produced by travel magnetic field at the wide faces of slab make the melt whirling in horizontal section,and the convection of the melt is strengthened obviously there. In addition,magnetic flux density attenuates from the edge to the center of slab,and the profile of the melt velocity along slab thickness in the center of the horizontal section takes a two-opposite-peak configuration. Ultimately,the stirring intensity and features are determined by the electromagnetic parameters,coil arrangement and stirring types.
基金This study was financially supported by the National Natural Science Foundation of China (No.50374043).
文摘The effects of various factors on the flow speed of interdendritic melt were analyzed in detail in the process of continuous casting slabs. When the solid-liquid interface bends periodically, the expression of solute distribution in the columnar crystal zone was deduced, and the quantitative calculation was also made. The results show that the bulge and the interdendritic spacing are responsible for the flow speed of interdendritic melt. At the initial stage of solidification the bulge operates, and at the final stage the interdendritic spacing operates. The experimental results of macrosegregation in the slabs validated the calculated results of the flow speed of interdendritic melt, which shows that the calculated results are basically consistent with the experimental ones.
基金The National High Technology Research and Development Program of China(863Program)(2006AA04Z140)The National Natural Science Foundation of China(NSFC)(50605024)
文摘In lost foam casting(LFC)the foam pattern is the key criterion,and the filling process is crucialto ensure the high quality of the foam pattern.Filling which lacks uniformity and denseness will cause variousdefects and affect the surface quality of the casting.The influential factors of the filling process are realized in thisresearch.Optimization of the filling process,enhancement of efficiency,decrease of waste,etc.,are obtained bythe numerical simulation of the filling process using a computer.The equations governing the dense gas-solid two-phase flow are established,and the physical significanceof each equation is discussed.The Euler/Lagrange numerical model is used to simulate the fluid dynamiccharacteristics of the dense two-phase flow during the mould filling process in lost foam casting.The experimentsand numerical results showed that this method can be a very promising tool in the mould filling simulation of beads’movement.
基金This work is partially supported from the National Sciences and Engineering Research Council(NSERC)of Canada Discovery Grant RGPIN48158 awarded to M.Hasan of McGill University,Montreal,for which the authors are grateful.
文摘Reducing wear on a side dam can prolong the casting operation life of a twin-roll strip casting process,thus reducing production cost and improving casting stability.To lengthen the service life of the side dam,it is necessary to understand the wear performance of the side dam material.To investigate the wear behavior mechanism of the side dam,in this study,the UMT-2 friction and wear tester was used to determine the relationship between the wear rate of the side-dam material and various parameters.Based on the roughness of the contact area between the side dam and the end of the casting rolls as well as on the amount of deformation of the side dam,which was derived using a thermal-deformation simulation model,the reasons for the uneven wear of the side dam were obtained.
文摘The centerline segregation in continuous casting steel is known to be formed by the interdendritic enriched liquid flow at the solidification end in strand.At present,several methods,such as thermal soft reduction, electromagnetic stirring and dynamic soft reduction,are available to reduce the center segregation and to improve the internal quality.Although some methods could alleviate center segregation to some extent,they can also give rise to new problems.For instance,thermal soft reduction can lead to surface cracking during casting of some steels and electromagnetic stirring can result in white band.Dynamic soft reduction is an effective technology for the improvement of strand quality in continuous slab casting.In this paper,the key parameters of dynamic soft reduction technology,such as soft reduction region,the total reduction amount,for low carbon steel have been studied based on experimental and theoretical analysis.The soft reduction region was related to the segregation of chemical composition,slab bulging of narrow side and avoiding internal crack of slab.The total reduction amount was composed of natural thermal shrinkage and actual reduction amount depending on critical strain.For low carbon steel with slab dimension of(950 - 1 950) mm×170 mm,the solid fraction range in soft reduction region was recommended from 0.4 to 0.8,the total reduction amount was 2.0 -2.8 mm,and the optimized reduction rate was 0.4 - 1.2 mm/min,respectively.Furthermore,a dynamic soft reduction system in continuous slab casting, Visual Cast-Dynamic,has been developed by multithreading method.It demonstrated that the dynamic soft reduction model in this study was correct with the ability of online control.
基金supported by State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology(09-04)National Natural Science Foundation of China(No.50775050)
文摘In order to overcome the zigzag grids generated by conventional finite difference method on complicated casting boundaries in the simulation of casting process, the generation program for 2-D boundary-fitted coordinate grid has been developed by solving a set of partial differential equations (PDE) numerically. The STL format files were treated as input data for 2-D physical regions. The equipartition method for boundary points was used to improve the self-adaptability of grid according to the characteristic of the STL format files. The program was demonstrated through some examples. The comparison between the conventional finite difference method and the proposed method shows that this program is effective and flexible for generation of boundary-fitted grid in any arbitrary 2-D complex domain, and the grid is in accordance with the variety of boundary curvature finely. The program also provides two types of boundary-fitted grids for double-connected region, O-type and C-type. The limitation of the step-like boundary with the rectangle grid could be avoided effectively. Therefore, the computational accuracy and efficiency would be improved and the computational time would be saved significantly by the application of boundary-fitted grids.
基金National High Technology Research and Development Program of China (863program) (2006AA04Z140)National Natural Science Foundation of China (NSFC) (50605024)
文摘Air entrapped in liquid metal during the mold filling process seriously affects the casting quality, thus it is important to track its behavior in the mold cavity. A liquid-gas two-phase flow model is developed to describe the mold filling process and predict the air entrapment defect. The model is based on the combination of SOLA and Level Set Method. The pressure and velocity fields are calculated by SOLA,and the interface movement is simulated by Level Set method as the most common interface tracking method in recent years.In order to validate the feasibility of the model,the liquid-gas two-phase simulation results were tested by the broken dam problem and the S-shaped experiment. Comparison between the experiments and simulation results show that Level Set method might be a very promising tool in two-phase flow simulation during the mold filling process.