For the mobile edge computing network consisting of multiple base stations and resourceconstrained user devices,network cost in terms of energy and delay will incur during task offloading from the user to the edge ser...For the mobile edge computing network consisting of multiple base stations and resourceconstrained user devices,network cost in terms of energy and delay will incur during task offloading from the user to the edge server.With the limitations imposed on transmission capacity,computing resource,and connection capacity,the per-slot online learning algorithm is first proposed to minimize the time-averaged network cost.In particular,by leveraging the theories of stochastic gradient descent and minimum cost maximum flow,the user association is jointly optimized with resource scheduling in each time slot.The theoretical analysis proves that the proposed approach can achieve asymptotic optimality without any prior knowledge of the network environment.Moreover,to alleviate the high network overhead incurred during user handover and task migration,a two-timescale optimization approach is proposed to avoid frequent changes in user association.With user association executed on a large timescale and the resource scheduling decided on the single time slot,the asymptotic optimality is preserved.Simulation results verify the effectiveness of the proposed online learning algorithms.展开更多
基金the National Natural Science Foundation of China(61971066,61941114)the Beijing Natural Science Foundation(No.L182038)National Youth Top-notch Talent Support Program.
文摘For the mobile edge computing network consisting of multiple base stations and resourceconstrained user devices,network cost in terms of energy and delay will incur during task offloading from the user to the edge server.With the limitations imposed on transmission capacity,computing resource,and connection capacity,the per-slot online learning algorithm is first proposed to minimize the time-averaged network cost.In particular,by leveraging the theories of stochastic gradient descent and minimum cost maximum flow,the user association is jointly optimized with resource scheduling in each time slot.The theoretical analysis proves that the proposed approach can achieve asymptotic optimality without any prior knowledge of the network environment.Moreover,to alleviate the high network overhead incurred during user handover and task migration,a two-timescale optimization approach is proposed to avoid frequent changes in user association.With user association executed on a large timescale and the resource scheduling decided on the single time slot,the asymptotic optimality is preserved.Simulation results verify the effectiveness of the proposed online learning algorithms.