Although pesticides have been widely used worldwide to enhance crop yield and product quality,most pesticides are harmful to the environment and human health.Plants absorb pesticides mainly from air and soil.Therefore...Although pesticides have been widely used worldwide to enhance crop yield and product quality,most pesticides are harmful to the environment and human health.Plants absorb pesticides mainly from air and soil.Therefore,the soil-plant pathway is essential for pesticide absorption.Bioconcentration factor(BCF)has extensively been applied to evaluate potential plant contamination by pesticides from soil.Hence,this study developed a simplified plant transpiration-based plant uptake model(PT-model)to estimate plant pesticides’BCF from soil based on plant transpiration.Remote sensing techniques were employed to generate spatiotemporal continuous plant transpiration via evapotranspiration.Pesticide BCF mapping was achieved by integrating PT-model with Moderate Resolution Imaging Spectroradiometer(MODIS)remotely sensed data.The results were compared with a verified model driven by relative humidity and air temperature(RA-model),which has been confirmed byfindings from previous studies.The estimated BCF was within the boundaries of the RA-model,indicating the simulation’s overall acceptability.In this study,the BCF temporal trend estimated by the proposed method agreed with the RA-model assimilating meteorology datasets,while the spatial distribution was partially inconsistent.Overall,the proposed method generates the spatiotemporal patterns of pesticide BCF with relatively consistent results supported by previous records andfindings.展开更多
In this study the transfer characteristics of mercury(Hg) from a wide range of Chinese soils to corn grain(cultivar Zhengdan 958) were investigated. Prediction models were developed for determining the Hg bioconce...In this study the transfer characteristics of mercury(Hg) from a wide range of Chinese soils to corn grain(cultivar Zhengdan 958) were investigated. Prediction models were developed for determining the Hg bioconcentration factor(BCF) of Zhengdan 958 from soil, including the soil properties, such as p H, organic matter(OM) concentration, cation exchange capacity(CEC), total nitrogen concentration(TN), total phosphorus concentration(TP), total potassium concentration(TK), and total Hg concentration(THg), using multiple stepwise regression analysis. These prediction models were applied to other non-model corn cultivars using a cross-species extrapolation approach. The results indicated that the soil p H was the most important factor associated with the transfer of Hg from soil to corn grain. Hg bioaccumulation in corn grain increased with the decreasing p H. No significant differences were found between two prediction models derived from different rates of Hg applied to the soil as HgCl2. The prediction models established in this study can be applied to other non-model corn cultivars and are useful for predicting Hg bioconcentration in corn grain and assessing the ecological risk of Hg in different soils.展开更多
The growth of Chlorella marine, Nannochloris oculate, Pyramimonaos sp., Platymonas subcordiformis and Phaeodactylum tricornutum exposed to chlorobenzene, 1,2-dichlorobenzene, 1,2,3,4-tetrachlorobenzene and pentach-lor...The growth of Chlorella marine, Nannochloris oculate, Pyramimonaos sp., Platymonas subcordiformis and Phaeodactylum tricornutum exposed to chlorobenzene, 1,2-dichlorobenzene, 1,2,3,4-tetrachlorobenzene and pentach-lorobenzene was tested. The Boltzman equation was used to describe organism growth. The time course for uptake of hydrophobic organic chemicals (HOCs) by aquatic organisms was expressed by incorporating growth and, if desired, the effect of metabolism into the HOC bioconcentration process. The probability of any given concentration of HOCs in the organisms causing a specified toxic endpoint was expressed with a modified Weibull distribution function. The combined bioconcentration and probability equations were tested with data for time course of incubation of algae exposed to chlorinated benzenes (CBs). A set of parameters, including the uptake rate constant k 1, the elimination rate constant k 2 and thereafter the bioconcentration factor on a dry weight basis, BCF D, the critical HOC concentration in the organism resulting in a specified toxic endpoint, C* A, and the spread factor, S, could be obtained by fitting only experimental data for percent growth inhibition(%)-time-CB exposure concentration. The average coefficients of variation within CBs were 15.2% for BCF D, 21.0% for k 1, 18.3% for k 2, 8.1% for C* A and 9.7% for S. The variability in toxicity (such as EC 10, EC 50, EC 90) derived from the model equations agreed well with those experimentally observed.展开更多
In this paper,we study the dynamical behavior of a stochastic two-compartment model of B-cell chronic lymphocytic leukemia,which is perturbed by white noise.Firstly,by constructing suitable Lyapunov functions,we estab...In this paper,we study the dynamical behavior of a stochastic two-compartment model of B-cell chronic lymphocytic leukemia,which is perturbed by white noise.Firstly,by constructing suitable Lyapunov functions,we establish sufficient conditions for the existence of a unique ergodic stationary distribution.Then,conditions for extinction of the disease are derived.Furthermore,numerical simulations are presented for supporting the theoretical results.Our results show that large noise intensity may contribute to extinction of the disease.展开更多
Background: The large potential of the soil organic carbon(SOC) pool to sequester CO2from the atmosphere could greatly ameliorate the effect of future climate change. However, the quantity of carbon stored in terrestr...Background: The large potential of the soil organic carbon(SOC) pool to sequester CO2from the atmosphere could greatly ameliorate the effect of future climate change. However, the quantity of carbon stored in terrestrial soils largely depends upon the magnitude of SOC mineralization. SOC mineralization constitutes an important part of the carbon cycle, and is driven by many biophysical variables, such as temperature and moisture.Methods: Soil samples of a pine forest, an oak forest, and a pine and oak mixed forest were incubated for 387 days under conditions with six temperature settings(5 °C, 10 °C, 15 °C, 20 °C, 25 °C, 30 °C) and three levels of soil moisture content(SMC, 30%, 60%, 90%). The instantaneous rate of mineralized SOC was periodically and automatically measured using a Li-Cor CO2analyzer. Based on the measured amount of mineralized SOC,carbon fractions were estimated separately via first-order kinetic one-and two-compartment models.Results: During the 387 day incubation experiment, accumulative mineralized carbon ranged from 22.89 mg carbon(C) ·g-1SOC at 30 °C and 30% SMC for the mixed forest to 109.20 mg C·g-1SOC at 15 °C and 90% SMC for the oak forest. Mineralized recalcitrant carbon varied from 18.48 mg C·g-1SOC at 30 °C and 30% SMC for the mixed forest to 104.98 mg C·g-1SOC at 15 °C and 90% SMC for the oak forest, and contributed at least 80% to total mineralized carbon.Conclusions: Based on the results of this experiment, the soil organic matter of the pure broadleaved forest is more vulnerable to soil microbial degradation in northern China; most of the amount of the mineralized SOC derived from the recalcitrant carbon pool. Labile carbon fraction constitutes on average 0.4% of SOC across the three forest types and was rapidly digested by soil microbes in the early incubation stage. SOC mineralization markedly increased with soil moisture content, and correlated parabolically to temperature with the highest value at 15 °C. No significant interaction was detected among these variables in the present study.展开更多
基金supported by the Natural Resources of Guangdong[No.[2023]-25]National Natural Science Foundation of China[No.42171400]+1 种基金Natural Science.Foundation of Guangdong Province[No.2021A1515011324]Henan Institute of Sun Yat-sen University[No.2021-006].
文摘Although pesticides have been widely used worldwide to enhance crop yield and product quality,most pesticides are harmful to the environment and human health.Plants absorb pesticides mainly from air and soil.Therefore,the soil-plant pathway is essential for pesticide absorption.Bioconcentration factor(BCF)has extensively been applied to evaluate potential plant contamination by pesticides from soil.Hence,this study developed a simplified plant transpiration-based plant uptake model(PT-model)to estimate plant pesticides’BCF from soil based on plant transpiration.Remote sensing techniques were employed to generate spatiotemporal continuous plant transpiration via evapotranspiration.Pesticide BCF mapping was achieved by integrating PT-model with Moderate Resolution Imaging Spectroradiometer(MODIS)remotely sensed data.The results were compared with a verified model driven by relative humidity and air temperature(RA-model),which has been confirmed byfindings from previous studies.The estimated BCF was within the boundaries of the RA-model,indicating the simulation’s overall acceptability.In this study,the BCF temporal trend estimated by the proposed method agreed with the RA-model assimilating meteorology datasets,while the spatial distribution was partially inconsistent.Overall,the proposed method generates the spatiotemporal patterns of pesticide BCF with relatively consistent results supported by previous records andfindings.
基金supported by the Special Fund of Public Industry in China (Agriculture, 200903015)the Science and Technology Project of Hebei Province, China (15227504D)
文摘In this study the transfer characteristics of mercury(Hg) from a wide range of Chinese soils to corn grain(cultivar Zhengdan 958) were investigated. Prediction models were developed for determining the Hg bioconcentration factor(BCF) of Zhengdan 958 from soil, including the soil properties, such as p H, organic matter(OM) concentration, cation exchange capacity(CEC), total nitrogen concentration(TN), total phosphorus concentration(TP), total potassium concentration(TK), and total Hg concentration(THg), using multiple stepwise regression analysis. These prediction models were applied to other non-model corn cultivars using a cross-species extrapolation approach. The results indicated that the soil p H was the most important factor associated with the transfer of Hg from soil to corn grain. Hg bioaccumulation in corn grain increased with the decreasing p H. No significant differences were found between two prediction models derived from different rates of Hg applied to the soil as HgCl2. The prediction models established in this study can be applied to other non-model corn cultivars and are useful for predicting Hg bioconcentration in corn grain and assessing the ecological risk of Hg in different soils.
基金supported by National Natural Science Foundation of China(No.49976027,No.49776302,No.40136020)Natural Science Foundation,Shandong(L2000E01)Ministry of Education(01110)and Trans-century Training Program Foundation for the Talents by Ministry of Education.
文摘The growth of Chlorella marine, Nannochloris oculate, Pyramimonaos sp., Platymonas subcordiformis and Phaeodactylum tricornutum exposed to chlorobenzene, 1,2-dichlorobenzene, 1,2,3,4-tetrachlorobenzene and pentach-lorobenzene was tested. The Boltzman equation was used to describe organism growth. The time course for uptake of hydrophobic organic chemicals (HOCs) by aquatic organisms was expressed by incorporating growth and, if desired, the effect of metabolism into the HOC bioconcentration process. The probability of any given concentration of HOCs in the organisms causing a specified toxic endpoint was expressed with a modified Weibull distribution function. The combined bioconcentration and probability equations were tested with data for time course of incubation of algae exposed to chlorinated benzenes (CBs). A set of parameters, including the uptake rate constant k 1, the elimination rate constant k 2 and thereafter the bioconcentration factor on a dry weight basis, BCF D, the critical HOC concentration in the organism resulting in a specified toxic endpoint, C* A, and the spread factor, S, could be obtained by fitting only experimental data for percent growth inhibition(%)-time-CB exposure concentration. The average coefficients of variation within CBs were 15.2% for BCF D, 21.0% for k 1, 18.3% for k 2, 8.1% for C* A and 9.7% for S. The variability in toxicity (such as EC 10, EC 50, EC 90) derived from the model equations agreed well with those experimentally observed.
基金This work is supported by the National Natural Science Foundation of China(No.11871473)Natural Science Foundation of Shandong Province(No.ZR2019MA010)Science and Technology Research Project of Jilin Provincial Department of Education of China(No.JJKH20180462KJ).
文摘In this paper,we study the dynamical behavior of a stochastic two-compartment model of B-cell chronic lymphocytic leukemia,which is perturbed by white noise.Firstly,by constructing suitable Lyapunov functions,we establish sufficient conditions for the existence of a unique ergodic stationary distribution.Then,conditions for extinction of the disease are derived.Furthermore,numerical simulations are presented for supporting the theoretical results.Our results show that large noise intensity may contribute to extinction of the disease.
基金financially supported by the Fundamental Research Funds for the Central Universities(Grant No.YX2014-10)the Normal Sustainability Fund for the Taiyueshan Long-Term Forest Ecology Research Station(2017-LYPT-DW-148)
文摘Background: The large potential of the soil organic carbon(SOC) pool to sequester CO2from the atmosphere could greatly ameliorate the effect of future climate change. However, the quantity of carbon stored in terrestrial soils largely depends upon the magnitude of SOC mineralization. SOC mineralization constitutes an important part of the carbon cycle, and is driven by many biophysical variables, such as temperature and moisture.Methods: Soil samples of a pine forest, an oak forest, and a pine and oak mixed forest were incubated for 387 days under conditions with six temperature settings(5 °C, 10 °C, 15 °C, 20 °C, 25 °C, 30 °C) and three levels of soil moisture content(SMC, 30%, 60%, 90%). The instantaneous rate of mineralized SOC was periodically and automatically measured using a Li-Cor CO2analyzer. Based on the measured amount of mineralized SOC,carbon fractions were estimated separately via first-order kinetic one-and two-compartment models.Results: During the 387 day incubation experiment, accumulative mineralized carbon ranged from 22.89 mg carbon(C) ·g-1SOC at 30 °C and 30% SMC for the mixed forest to 109.20 mg C·g-1SOC at 15 °C and 90% SMC for the oak forest. Mineralized recalcitrant carbon varied from 18.48 mg C·g-1SOC at 30 °C and 30% SMC for the mixed forest to 104.98 mg C·g-1SOC at 15 °C and 90% SMC for the oak forest, and contributed at least 80% to total mineralized carbon.Conclusions: Based on the results of this experiment, the soil organic matter of the pure broadleaved forest is more vulnerable to soil microbial degradation in northern China; most of the amount of the mineralized SOC derived from the recalcitrant carbon pool. Labile carbon fraction constitutes on average 0.4% of SOC across the three forest types and was rapidly digested by soil microbes in the early incubation stage. SOC mineralization markedly increased with soil moisture content, and correlated parabolically to temperature with the highest value at 15 °C. No significant interaction was detected among these variables in the present study.