Non-Hermitian Hamiltonians are widely used in describing open systems with gain and loss,among which a key phenomenon is the non-Hermitian skin effect.Here we report an experimental scheme to realize a twodimensional(...Non-Hermitian Hamiltonians are widely used in describing open systems with gain and loss,among which a key phenomenon is the non-Hermitian skin effect.Here we report an experimental scheme to realize a twodimensional(2D)discrete-time quantum walk with non-Hermitian skin effect in a single trapped ion.It is shown that the coin and 2D walker states can be labeled in the spin of the ion and the coherent-state lattice of the ion motion,respectively.We numerically observe a directional bulk flow,whose orientations are controlled by dissipative parameters,showing the emergence of the non-Hermitian skin effect.We then discuss an experimental implementation of our scheme in a laser-controlled trapped Ca^(+)ion.Our experimental proposal may be applicable to research of dissipative quantum walk systems and may be able to generalize to other platforms,such as superconducting circuits and atoms in cavity.展开更多
Valley-polarized quantum anomalous Hall effect(VQAHE), combined nontrivial band topology with valleytronics,is of importance for both fundamental sciences and emerging applications. However, the experimental realizati...Valley-polarized quantum anomalous Hall effect(VQAHE), combined nontrivial band topology with valleytronics,is of importance for both fundamental sciences and emerging applications. However, the experimental realization of this property is challenging. Here, by using first-principles calculations and modal analysis, we predict a mechanism of producing VQAHE in two-dimensional ferromagnetic van der Waals germanene/MnI_(2) heterostructure. This heterostructure exhibits both valley anomalous Hall effect and VQAHE due to the joint effects of magnetic exchange effect and spin–orbital coupling with the aid of anomalous Hall conductance and chiral edge state. Moreover interestingly, through the electrical modulation of ferroelectric polarization state in In_(2)Se_(3), the germanene/Mn I_(2)/In_(2)Se_(3) heterostructure can undergo reversible switching from a semiconductor to a metallic behavior. This work offers a guiding advancement for searching for VQAHE in ferromagnetic van der Waals heterostructures and exploiting energy-efficient devices based on the VQAHE.展开更多
The anomalous valley Hall effect(AVHE)can be used to explore and utilize valley degrees of freedom in materials,which has potential applications in fields such as information storage,quantum computing and optoelectron...The anomalous valley Hall effect(AVHE)can be used to explore and utilize valley degrees of freedom in materials,which has potential applications in fields such as information storage,quantum computing and optoelectronics.AVHE exists in two-dimensional(2D)materials possessing valley polarization(VP),and such 2D materials usually belong to the hexagonal honeycomb lattice.Therefore,it is necessary to achieve valleytronic materials with VP that are more readily to be synthesized and applicated experimentally.In this topical review,we introduce recent developments on realizing VP as well as AVHE through different methods,i.e.,doping transition metal atoms,building ferrovalley heterostructures and searching for ferrovalley materials.Moreover,2D ferrovalley systems under external modulation are also discussed.2D valleytronic materials with AVHE demonstrate excellent performance and potential applications,which offer the possibility of realizing novel low-energy-consuming devices,facilitating further development of device technology,realizing miniaturization and enhancing functionality of them.展开更多
We propose a scheme for realizing the spin direction-dependent quantum anomalous Hall effect(QAHE)driven by spin-orbit couplings(SOC)in two-dimensional(2D)materials.Based on the sp^(3)tight-binding(TB)model,we find th...We propose a scheme for realizing the spin direction-dependent quantum anomalous Hall effect(QAHE)driven by spin-orbit couplings(SOC)in two-dimensional(2D)materials.Based on the sp^(3)tight-binding(TB)model,we find that these systems can exhibit a QAHE with out-of-plane and in-plane magnetization for the weak and strong SOC,respectively,in which the mechanism of quantum transition is mainly driven by the band inversion of p_(x,y)/p_(z)orbitals.As a concrete example,based on first-principles calculations,we realize a real material of monolayer 1T-SnN_(2)/PbN_(2)exhibiting the QAHE with in-plane/out-of-plane magnetization characterized by the nonzero Chern number C and topological edge states.These findings provide useful guidance for the pursuit of a spin direction-dependent QAHE and hence stimulate immediate experimental interest.展开更多
Two-dimensional(2D)magnet/superconductor heterostructures can promote the design of artificial materials for exploring 2D physics and device applications by exotic proximity effects.However,plagued by the low Curie te...Two-dimensional(2D)magnet/superconductor heterostructures can promote the design of artificial materials for exploring 2D physics and device applications by exotic proximity effects.However,plagued by the low Curie temperature and instability in air,it is hard to realize practical applications for the reported layered magnetic materials at present.In this paper,we developed a space-confined chemical vapor deposition method to synthesize ultrathin air-stable ε-Fe_(2)O_(3) nanosheets with Curie temperature above 350 K.The ε-Fe_(2)O_(3)/NbSe_(2) heterojunction was constructed to study the magnetic proximity effect on the superconductivity of the NbSe_(2) multilayer.The electrical transport results show that the subtle proximity effect can modulate the interfacial spin–orbit interaction while undegrading the superconducting critical parameters.Our work paves the way to construct 2D heterojunctions with ultrathin nonlayered materials and layered van der Waals(vdW)materials for exploring new physical phenomena.展开更多
The achievement of electrical spin control is highly desirable.One promising strategy involves electrically mod-ulating the Rashba spin orbital coupling effect in materials.A semiconductor with high sensitivity in its...The achievement of electrical spin control is highly desirable.One promising strategy involves electrically mod-ulating the Rashba spin orbital coupling effect in materials.A semiconductor with high sensitivity in its Rashba constant to external electric fields holds great potential for short channel lengths in spin field-effect transistors,which is crucial for preserving spin coherence and enhancing integration density.Hence,two-dimensional(2D)Rashba semiconductors with large Rashba constants and significant electric field responses are highly desirable.Herein,by employing first-principles calculations,we design a thermodynamically stable 2D Rashba semiconductor,YSbTe_(3),which possesses an indirect band gap of 1.04 eV,a large Rashba constant of 1.54 eV·Åand a strong electric field response of up to 4.80 e·Å^(2).In particular,the Rashba constant dependence on the electric field shows an unusual nonlinear relationship.At the same time,YSbTe_(3)has been identified as a 2D ferroelectric material with a moderate polarization switching energy barrier(~0.33 eV per formula).By changing the electric polarization direction,the Rashba spin texture of YSbTe_(3)can be reversed.These out-standing properties make the ferroelectric Rashba semiconductor YSbTe_(3)quite promising for spintronic applications.展开更多
Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic...Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic parameters of laser-induced Zr plasma have been evaluated as a function of different laser irradiances ranging from 4.5 to 11.7 GW cm-2 at different axial positions of 1–4 cm with a fixed radial distance of 2 cm.A well-supporting correlation between the plume parameters and the laser-plasma-produced spontaneous electric and magnetic(E and B)fields was established.The measurements of the characteristic parameters and spontaneously induced fields were observed to have an increasing trend with the increasing laser irradiance.However,when increasing the spatial distance in both the axial and radial directions,the plasma parameters(electron/ion number density,temperature and kinetic energy)did not show either continuously increasing or decreasing trends due to various kinetic and dynamic processes during the spatial evolution of the plume.However,the E and B fields were observed to be always diffusing away from the target.The radial component of electron number densities remained higher than the axial number density component,whereas the axial ion number density at all laser irradiances and axial distances remained higher than the radial ion number density.The higher axial self-generated electric field(SGEF)values than radial SGEF values are correlated with the effective charge-separation mechanism of electrons and ions.The generation of a self-generated magnetic field is observed dominantly in the radial direction at increasing laser irradiance as compared to the axial one due to the deflection of fast-moving electrons and the persistence of two-electron temperature on the radial axis.展开更多
Two-dimensional(2D)ferroelectric compounds are a special class of materials that meet the need for devices miniaturization,which can lead to a wide range of applications.Here,we investigate ferroelectric properties of...Two-dimensional(2D)ferroelectric compounds are a special class of materials that meet the need for devices miniaturization,which can lead to a wide range of applications.Here,we investigate ferroelectric properties of monolayer group-IV monochalcogenides MX(M=Sn,Ge;X=Se,Te,S)via strain engineering,and their effects with contaminated hydrogen are also discussed.GeSe,GeTe,and GeS do not go through transition up to the compressive strain of-5%,and consequently have good ferroelectric parameters for device applications that can be further improved by applying strain.According to the calculated ferroelectric properties and the band gaps of these materials,we find that their band gap can be adjusted by strain for excellent photovoltaic applications.In addition,we have determined the most stable hydrogen occupancy location in the monolayer SnS and SnTe.It reveals that H prefers to absorb on SnS and SnTe monolayers as molecules rather than atomic H.As a result,hydrogen molecules have little effect on the polarization and electronic structure of monolayer SnTe and SnS.展开更多
The quantum anomalous Hall effect(QAHE) has special quantum properties that are ideal for possible future spintronic devices. However, the experimental realization is rather challenging due to its low Curie temperatur...The quantum anomalous Hall effect(QAHE) has special quantum properties that are ideal for possible future spintronic devices. However, the experimental realization is rather challenging due to its low Curie temperature and small non-trivial bandgap in two-dimensional(2D) materials. In this paper, we demonstrate through first-principles calculations that monolayer Co2Te material is a promising 2D candidate to realize QAHE in practice. Excitingly, through Monte Carlo simulations, it is found that the Curie temperature of single-layer Co2Te can reach 573 K. The band crossing at the Fermi level in monolayer Co2Te is opened when spin–orbit coupling is considered, which leads to QAHE with a sizable bandgap of Eg= 96 me V, characterized by the non-zero Chern number(C = 1) and a chiral edge state. Therefore, our findings not only enrich the study of quantum anomalous Hall effect, but also broaden the horizons of the spintronics and topological nanoelectronics applications.展开更多
Based on the Bogoliubov-de Gennes equation and the extended McMillan’s Green’s function formalism,we study theoretically the Josephson effect between two d-wave superconductors bridged by a ballistic two-dimensional...Based on the Bogoliubov-de Gennes equation and the extended McMillan’s Green’s function formalism,we study theoretically the Josephson effect between two d-wave superconductors bridged by a ballistic two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting.We show that due to the interplay of Rashba spin-orbit coupling and Zeeman splitting and d-wave pairing,the current-phase relation in such a heterostructure may exhibit a series of novel features and can change significantly as some relevant parameters are tuned.In particular,anomalous Josephson current may occur at zero phase bias under various different situations if both time reversal symmetry and inversion symmetry of the system are simultaneously broken,which can be realized by tuning some relevant parameters of the system,including the relative orientations and the strengths of the Zeeman field and the spin-orbit field in the bridge region,the relative orientations of the a axes in two superconductor leads,or the relative orientations between the Zeeman field in the bridge region and the a axes in the superconductor leads.We show that both the magnitude and the direction of the anomalous Josephson current may depend sensitively on these relevant parameters.展开更多
Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and requi...Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and require different consider- ations. The unique band structure of graphene necessitates engineering of the Dirac point, including the opening of the bandgap, the doping and the interface, before the graphene can be used in logic applications. On the other hand, MoS2 is a semiconductor, and its electron transport depends heavily on the surface properties, the number of layers, and the carrier density. Finally, we discuss the prospects for the future developments in 2D material transistors.展开更多
240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge ef...240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge effects.Here,it is revealed that the peak optical output power increases by 81.83%with the size shrinking from 50.0 to 25.0μm.Thereinto,the LEE increases by 26.21%and the LEE enhancement mainly comes from the sidewall light extraction.Most notably,transversemagnetic(TM)mode light intensifies faster as the size shrinks due to the tilted mesa side-wall and Al reflector design.However,when it turns to 12.5μm sized micro-LEDs,the output power is lower than 25.0μm sized ones.The underlying mechanism is that even though protected by SiO2 passivation,the edge effect which leads to current leakage and Shockley-Read-Hall(SRH)recombination deteriorates rapidly with the size further shrinking.Moreover,the ratio of the p-contact area to mesa area is much lower,which deteriorates the p-type current spreading at the mesa edge.These findings show a role of thumb for the design of high efficiency micro-LEDs with wavelength below 250 nm,which will pave the way for wide applications of deep ultraviolet(DUV)micro-LEDs.展开更多
The fundamental momentum conservation requirement q - 0 for the Raman process is relaxed in the nanocrystal- lites (NCs), and phonons away from the Brillouin-zone center will be involved in the Raman scattering, whi...The fundamental momentum conservation requirement q - 0 for the Raman process is relaxed in the nanocrystal- lites (NCs), and phonons away from the Brillouin-zone center will be involved in the Raman scattering, which is well-known as the phonon confinement effect in NCs. This usually gives a downshift and asymmetric broadening of the Raman peak in various NCs. Recently, the A1 mode of 1L MoS2 NCs is found to exhibit a blue shift and asymmetric broadening toward the high-frequency side [Chem. Soc. Rev. 44 (2015) 2757 and Phys. Rev. B 91 (2015) 195411]. In this work, we carefully check this issue by studying Raman spectra of lL MoS2 NCs prepared by the ion implantation technique in a wide range of ion-implanted dosage. The same confinement coefficient is used for both E' and A'1 modes in 1L MoS2 NCs since the phonon uncertainty in an NC is mainly determined by its domain size. The asymmetrical broadening near the A'1 and E' modes is attributed to the appearance of defect-activated phonons at the zone edge and the intrinsic asymmetrical broadening of the two modes, where the anisotropy of phonon dispersion curves along Г-K and Г- M is also considered. The photoluminescence spectra confirm the formation of small domain size of 1L MoS2 nanocrystallites in the ion-implanted 1L MoS2. This study provides not only an approach to quickly probe phonon dispersion trends of 2D materials away from Г by the Raman scattering of the corresponding NCs, but also a reference to completely understand the confinement effect of different modes in various nanomaterials.展开更多
In a vast number of engineering fields like medicine,aerospace or robotics,materials are required to meet unusual performances that simple homogeneous materials are often not able to fulfil.Consequently,many efforts a...In a vast number of engineering fields like medicine,aerospace or robotics,materials are required to meet unusual performances that simple homogeneous materials are often not able to fulfil.Consequently,many efforts are currently devoted to develop future generations of materials with enhanced properties and unusual functionalities.In many instances,biological systems served as a source of inspiration,as in the case of cellular materials.Commonly observed in nature,cellular materials offer useful combinations of structural properties and low weight,yielding the possibility of coexistence of what used to be antagonistic physical properties within a single material.Due to their peculiar characteristics,they are very promising for engineering applications in a variety of industries including aerospace,automotive,marine and constructions.However,their use is conditional upon the development of appropriate constitutive models for revealing the complex relations between the microstructure's parameters and the macroscopic behavior.From this point of view,a great variety of analytical and numerical techniques have been proposed and exhaustively discussed in recent years.Noteworthy contributions,suggesting different assumptions and techniques are critically presented in this review paper.展开更多
Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinat...Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinations is more significant than a specific food component.This study investigated the lipid-lowering effect of highland barley polyphenols via lipase assay in vitro and HepG2 cells induced by oleic acid(OA).Five indexes,triglyceride(TG),total cholesterol(T-CHO),low density lipoprotein-cholesterol(LDL-C),aspartate aminotransferase(AST),and alanine aminotransferase(ALT),were used to evaluate the lipidlowering effect of highland barley extract.We also preliminary studied the lipid-lowering mechanism by Realtime fluorescent quantitative polymerase chain reaction(q PCR).The results indicated that highland barley extract contains many components with lipid-lowering effects,such as hyperoside and scoparone.In vitro,the lipase assay showed an 18.4%lipase inhibition rate when the additive contents of highland barley extract were 100μg/m L.The intracellular lipid-lowering effect of highland barley extract was examined using 0.25 mmol/L OA-induced HepG2 cells.The results showed that intracellular TG,LDL-C,and T-CHO content decreased by 34.4%,51.2%,and 18.4%,respectively.ALT and AST decreased by 51.6%and 20.7%compared with the untreated hyperlipidemic HepG2 cells.q PCR results showed that highland barley polyphenols could up-regulation the expression of lipid metabolism-related genes such as PPARγand Fabp4.展开更多
Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-elect...Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries.展开更多
To investigate the mechanism of rockburst prevention by spraying water onto the surrounding rocks,15 experiments are performed considering different water absorption levels on a single face.High-speed photography and ...To investigate the mechanism of rockburst prevention by spraying water onto the surrounding rocks,15 experiments are performed considering different water absorption levels on a single face.High-speed photography and acoustic emission(AE)system are used to monitor the rockburst process.The effect of water on sandstone rockburst and the prevention mechanism of water on sandstone rockburst are analyzed from the perspective of energy and failure mode.The results show that the higher the ab-sorption degree,the lower the intensity of the rockburst after absorbing water on single side of sand-stone.This is reflected in the fact that with the increase in the water absorption level,the ejection velocity of rockburst fragments is smaller,the depth of the rockburst pit is shallower,and the AE energy is smaller.Under the water absorption level of 100%,the magnitude of rockburst intensity changes from medium to slight.The prevention mechanism of water on sandstone rockburst is that water reduces the capacity of sandstone to store strain energy and accelerates the expansion of shear cracks,which is not conducive to the occurrence of plate cracking before rockburst,and destroys the conditions for rockburst incubation.展开更多
Based on the thermal network of the two-dimensional heterojunction bipolar transistors(HBTs) array, the thermal resistance matrix is presented, including the self-heating thermal resistance and thermal coupling resist...Based on the thermal network of the two-dimensional heterojunction bipolar transistors(HBTs) array, the thermal resistance matrix is presented, including the self-heating thermal resistance and thermal coupling resistance to describe the self-heating and thermal coupling effects, respectively.For HBT cells along the emitter length direction, the thermal coupling resistance is far smaller than the self-heating thermal resistance, and the peak junction temperature is mainly determined by the self-heating thermal resistance.However, the thermal coupling resistance is in the same order with the self-heating thermal resistance for HBT cells along the emitter width direction.Furthermore, the dependence of the thermal resistance matrix on cell spacing along the emitter length direction and cell spacing along the emitter width direction is also investigated, respectively.It is shown that the moderate increase of cell spacings along the emitter length direction and the emitter width direction could effectively lower the self-heating thermal resistance and thermal coupling resistance,and hence the peak junction temperature is decreased, which sheds light on adopting a two-dimensional non-uniform cell spacing layout to improve the uneven temperature distribution.By taking a 2 × 6 HBTs array for example, a twodimensional non-uniform cell spacing layout is designed, which can effectively lower the peak junction temperature and reduce the non-uniformity of the dissipated power.For the HBTs array with optimized layout, the high power-handling capability and thermal dissipation capability are kept when the bias voltage increases.展开更多
Graphene, with its zero-bandgap electronic structure, is a highly promising ultra-broadband light absorbing material.However, the performance of graphene-based photodetectors is limited by weak absorption efficiency a...Graphene, with its zero-bandgap electronic structure, is a highly promising ultra-broadband light absorbing material.However, the performance of graphene-based photodetectors is limited by weak absorption efficiency and rapid recombination of photoexcited carriers, leading to poor photodetection performance. Here, inspired by the photogating effect, we demonstrated a highly sensitive photodetector based on graphene/WSe_(2) vertical heterostructure where the WSe_(2) layer acts as both the light absorption layer and the localized grating layer. The graphene conductive channel is induced to produce more carriers by capacitive coupling. Due to the strong light absorption and high external quantum efficiency of multilayer WSe_(2), as well as the high carrier mobility of graphene, a high photocurrent is generated in the vertical heterostructure. As a result, the photodetector exhibits ultra-high responsivity of 3.85×10~4A/W and external quantum efficiency of 1.3 × 10~7%.This finding demonstrates that photogating structures can effectively enhance the sensitivity of graphene-based photodetectors and may have great potential applications in future optoelectronic devices.展开更多
In this study,we systematically investigated the effect of proton concentration on the kinetics of the oxygen reduction reaction(ORR)on Pt(111)in acidic solutions.Experimental results demonstrate a rectangular hyperbo...In this study,we systematically investigated the effect of proton concentration on the kinetics of the oxygen reduction reaction(ORR)on Pt(111)in acidic solutions.Experimental results demonstrate a rectangular hyperbolic relationship,i.e.,the ORR current excluding the effect of other variables increases with proton concentration and then tends to a constant value.We consider that this is caused by the limitation of ORR kinetics by the trace oxygen concentration in the solution,which determines the upper limit of ORR kinetics.A model of effective concentration is further proposed for rectangular hyperbolic relationships:when the reactant concentration is high enough to reach a critical saturation concentration,the effective reactant concentration will become a constant value.This could be due to the limited concentration of a certain reactant for reactions involving more than one reactant or the limited number of active sites available on the catalyst.Our study provides new insights into the kinetics of electrocatalytic reactions,and it is important for the proper evaluation of catalyst activity and the study of structureperformance relationships.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.92165206 and 11974330)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301603)the Fundamental Research Funds for the Central Universities。
文摘Non-Hermitian Hamiltonians are widely used in describing open systems with gain and loss,among which a key phenomenon is the non-Hermitian skin effect.Here we report an experimental scheme to realize a twodimensional(2D)discrete-time quantum walk with non-Hermitian skin effect in a single trapped ion.It is shown that the coin and 2D walker states can be labeled in the spin of the ion and the coherent-state lattice of the ion motion,respectively.We numerically observe a directional bulk flow,whose orientations are controlled by dissipative parameters,showing the emergence of the non-Hermitian skin effect.We then discuss an experimental implementation of our scheme in a laser-controlled trapped Ca^(+)ion.Our experimental proposal may be applicable to research of dissipative quantum walk systems and may be able to generalize to other platforms,such as superconducting circuits and atoms in cavity.
基金Project supported by the National Natural Science Foundation of China (Grant No. 52173283)Taishan Scholar Program of Shandong Province (Grant No. ts20190939)Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043)。
文摘Valley-polarized quantum anomalous Hall effect(VQAHE), combined nontrivial band topology with valleytronics,is of importance for both fundamental sciences and emerging applications. However, the experimental realization of this property is challenging. Here, by using first-principles calculations and modal analysis, we predict a mechanism of producing VQAHE in two-dimensional ferromagnetic van der Waals germanene/MnI_(2) heterostructure. This heterostructure exhibits both valley anomalous Hall effect and VQAHE due to the joint effects of magnetic exchange effect and spin–orbital coupling with the aid of anomalous Hall conductance and chiral edge state. Moreover interestingly, through the electrical modulation of ferroelectric polarization state in In_(2)Se_(3), the germanene/Mn I_(2)/In_(2)Se_(3) heterostructure can undergo reversible switching from a semiconductor to a metallic behavior. This work offers a guiding advancement for searching for VQAHE in ferromagnetic van der Waals heterostructures and exploiting energy-efficient devices based on the VQAHE.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12274264 and 11674197)the Natural Science Foundation of Shandong Province of China (Grant Nos.ZR2022MA039 and ZR2021MA105)the Qing-Chuang Science and Technology Plan of Shandong Province of China (Grant No.2019KJJ014)。
文摘The anomalous valley Hall effect(AVHE)can be used to explore and utilize valley degrees of freedom in materials,which has potential applications in fields such as information storage,quantum computing and optoelectronics.AVHE exists in two-dimensional(2D)materials possessing valley polarization(VP),and such 2D materials usually belong to the hexagonal honeycomb lattice.Therefore,it is necessary to achieve valleytronic materials with VP that are more readily to be synthesized and applicated experimentally.In this topical review,we introduce recent developments on realizing VP as well as AVHE through different methods,i.e.,doping transition metal atoms,building ferrovalley heterostructures and searching for ferrovalley materials.Moreover,2D ferrovalley systems under external modulation are also discussed.2D valleytronic materials with AVHE demonstrate excellent performance and potential applications,which offer the possibility of realizing novel low-energy-consuming devices,facilitating further development of device technology,realizing miniaturization and enhancing functionality of them.
基金Project supported by Taishan Scholar Program of Shandong Province (Grant No.ts20190939)Independent Cultivation Program of Innovation Team of Jinan City (Grant No.2021GXRC043)the National Natural Science Foundation of China (Grant No.52173283)。
文摘We propose a scheme for realizing the spin direction-dependent quantum anomalous Hall effect(QAHE)driven by spin-orbit couplings(SOC)in two-dimensional(2D)materials.Based on the sp^(3)tight-binding(TB)model,we find that these systems can exhibit a QAHE with out-of-plane and in-plane magnetization for the weak and strong SOC,respectively,in which the mechanism of quantum transition is mainly driven by the band inversion of p_(x,y)/p_(z)orbitals.As a concrete example,based on first-principles calculations,we realize a real material of monolayer 1T-SnN_(2)/PbN_(2)exhibiting the QAHE with in-plane/out-of-plane magnetization characterized by the nonzero Chern number C and topological edge states.These findings provide useful guidance for the pursuit of a spin direction-dependent QAHE and hence stimulate immediate experimental interest.
基金The work is supported by the National Key Research and Development Program of China(Grant No.2022YFA1204104)the National Natural Science Foundation of China(Grant No.61888102)the Chinese Academy of Sciences(Grant Nos.ZDBS-SSW-WHC001 and XDB33030100).
文摘Two-dimensional(2D)magnet/superconductor heterostructures can promote the design of artificial materials for exploring 2D physics and device applications by exotic proximity effects.However,plagued by the low Curie temperature and instability in air,it is hard to realize practical applications for the reported layered magnetic materials at present.In this paper,we developed a space-confined chemical vapor deposition method to synthesize ultrathin air-stable ε-Fe_(2)O_(3) nanosheets with Curie temperature above 350 K.The ε-Fe_(2)O_(3)/NbSe_(2) heterojunction was constructed to study the magnetic proximity effect on the superconductivity of the NbSe_(2) multilayer.The electrical transport results show that the subtle proximity effect can modulate the interfacial spin–orbit interaction while undegrading the superconducting critical parameters.Our work paves the way to construct 2D heterojunctions with ultrathin nonlayered materials and layered van der Waals(vdW)materials for exploring new physical phenomena.
基金supported by the National Natural Science Foundation of China(22322304,22273092,22373095)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0450101)+2 种基金the Innovation Program for Quantum Science and Technology(2021ZD0303306)the USTC Tang ScholarThe authors wish to acknowledge the Supercomputing Center of the USTC for providing computational resources.
文摘The achievement of electrical spin control is highly desirable.One promising strategy involves electrically mod-ulating the Rashba spin orbital coupling effect in materials.A semiconductor with high sensitivity in its Rashba constant to external electric fields holds great potential for short channel lengths in spin field-effect transistors,which is crucial for preserving spin coherence and enhancing integration density.Hence,two-dimensional(2D)Rashba semiconductors with large Rashba constants and significant electric field responses are highly desirable.Herein,by employing first-principles calculations,we design a thermodynamically stable 2D Rashba semiconductor,YSbTe_(3),which possesses an indirect band gap of 1.04 eV,a large Rashba constant of 1.54 eV·Åand a strong electric field response of up to 4.80 e·Å^(2).In particular,the Rashba constant dependence on the electric field shows an unusual nonlinear relationship.At the same time,YSbTe_(3)has been identified as a 2D ferroelectric material with a moderate polarization switching energy barrier(~0.33 eV per formula).By changing the electric polarization direction,the Rashba spin texture of YSbTe_(3)can be reversed.These out-standing properties make the ferroelectric Rashba semiconductor YSbTe_(3)quite promising for spintronic applications.
文摘Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic parameters of laser-induced Zr plasma have been evaluated as a function of different laser irradiances ranging from 4.5 to 11.7 GW cm-2 at different axial positions of 1–4 cm with a fixed radial distance of 2 cm.A well-supporting correlation between the plume parameters and the laser-plasma-produced spontaneous electric and magnetic(E and B)fields was established.The measurements of the characteristic parameters and spontaneously induced fields were observed to have an increasing trend with the increasing laser irradiance.However,when increasing the spatial distance in both the axial and radial directions,the plasma parameters(electron/ion number density,temperature and kinetic energy)did not show either continuously increasing or decreasing trends due to various kinetic and dynamic processes during the spatial evolution of the plume.However,the E and B fields were observed to be always diffusing away from the target.The radial component of electron number densities remained higher than the axial number density component,whereas the axial ion number density at all laser irradiances and axial distances remained higher than the radial ion number density.The higher axial self-generated electric field(SGEF)values than radial SGEF values are correlated with the effective charge-separation mechanism of electrons and ions.The generation of a self-generated magnetic field is observed dominantly in the radial direction at increasing laser irradiance as compared to the axial one due to the deflection of fast-moving electrons and the persistence of two-electron temperature on the radial axis.
基金the National Natural Science Foundation of China(NSFC)(Grant No.12074126)the Foundation for Innovative Research Groups of NSFC(Grant No.51621001)the Fundamental Research Funds for the Central Universities(Grant No.2020ZYGXZR076).
文摘Two-dimensional(2D)ferroelectric compounds are a special class of materials that meet the need for devices miniaturization,which can lead to a wide range of applications.Here,we investigate ferroelectric properties of monolayer group-IV monochalcogenides MX(M=Sn,Ge;X=Se,Te,S)via strain engineering,and their effects with contaminated hydrogen are also discussed.GeSe,GeTe,and GeS do not go through transition up to the compressive strain of-5%,and consequently have good ferroelectric parameters for device applications that can be further improved by applying strain.According to the calculated ferroelectric properties and the band gaps of these materials,we find that their band gap can be adjusted by strain for excellent photovoltaic applications.In addition,we have determined the most stable hydrogen occupancy location in the monolayer SnS and SnTe.It reveals that H prefers to absorb on SnS and SnTe monolayers as molecules rather than atomic H.As a result,hydrogen molecules have little effect on the polarization and electronic structure of monolayer SnTe and SnS.
基金supported by the Taishan Scholar Program of Shandong Province, China (Grant No. ts20190939)the Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043)the National Natural Science Foundation of China (Grant No. 52173238)。
文摘The quantum anomalous Hall effect(QAHE) has special quantum properties that are ideal for possible future spintronic devices. However, the experimental realization is rather challenging due to its low Curie temperature and small non-trivial bandgap in two-dimensional(2D) materials. In this paper, we demonstrate through first-principles calculations that monolayer Co2Te material is a promising 2D candidate to realize QAHE in practice. Excitingly, through Monte Carlo simulations, it is found that the Curie temperature of single-layer Co2Te can reach 573 K. The band crossing at the Fermi level in monolayer Co2Te is opened when spin–orbit coupling is considered, which leads to QAHE with a sizable bandgap of Eg= 96 me V, characterized by the non-zero Chern number(C = 1) and a chiral edge state. Therefore, our findings not only enrich the study of quantum anomalous Hall effect, but also broaden the horizons of the spintronics and topological nanoelectronics applications.
文摘Based on the Bogoliubov-de Gennes equation and the extended McMillan’s Green’s function formalism,we study theoretically the Josephson effect between two d-wave superconductors bridged by a ballistic two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting.We show that due to the interplay of Rashba spin-orbit coupling and Zeeman splitting and d-wave pairing,the current-phase relation in such a heterostructure may exhibit a series of novel features and can change significantly as some relevant parameters are tuned.In particular,anomalous Josephson current may occur at zero phase bias under various different situations if both time reversal symmetry and inversion symmetry of the system are simultaneously broken,which can be realized by tuning some relevant parameters of the system,including the relative orientations and the strengths of the Zeeman field and the spin-orbit field in the bridge region,the relative orientations of the a axes in two superconductor leads,or the relative orientations between the Zeeman field in the bridge region and the a axes in the superconductor leads.We show that both the magnitude and the direction of the anomalous Josephson current may depend sensitively on these relevant parameters.
基金supported by the National Basic Research Program of China (Grant No. 2013CBA01600)the National Natural Science Foundation of China (Grant Nos. 61261160499 and 11274154)+2 种基金the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX02707)the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012302)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120091110028)
文摘Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and require different consider- ations. The unique band structure of graphene necessitates engineering of the Dirac point, including the opening of the bandgap, the doping and the interface, before the graphene can be used in logic applications. On the other hand, MoS2 is a semiconductor, and its electron transport depends heavily on the surface properties, the number of layers, and the carrier density. Finally, we discuss the prospects for the future developments in 2D material transistors.
基金This work was supported by National Key R&D Program of China(2022YFB3605103)the National Natural Science Foundation of China(62204241,U22A2084,62121005,and 61827813)+3 种基金the Natural Science Foundation of Jilin Province(20230101345JC,20230101360JC,and 20230101107JC)the Youth Innovation Promotion Association of CAS(2023223)the Young Elite Scientist Sponsorship Program By CAST(YESS20200182)the CAS Talents Program(E30122E4M0).
文摘240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge effects.Here,it is revealed that the peak optical output power increases by 81.83%with the size shrinking from 50.0 to 25.0μm.Thereinto,the LEE increases by 26.21%and the LEE enhancement mainly comes from the sidewall light extraction.Most notably,transversemagnetic(TM)mode light intensifies faster as the size shrinks due to the tilted mesa side-wall and Al reflector design.However,when it turns to 12.5μm sized micro-LEDs,the output power is lower than 25.0μm sized ones.The underlying mechanism is that even though protected by SiO2 passivation,the edge effect which leads to current leakage and Shockley-Read-Hall(SRH)recombination deteriorates rapidly with the size further shrinking.Moreover,the ratio of the p-contact area to mesa area is much lower,which deteriorates the p-type current spreading at the mesa edge.These findings show a role of thumb for the design of high efficiency micro-LEDs with wavelength below 250 nm,which will pave the way for wide applications of deep ultraviolet(DUV)micro-LEDs.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11225421,11474277,11434010 and 11574305the National Young 1000 Talent Plan
文摘The fundamental momentum conservation requirement q - 0 for the Raman process is relaxed in the nanocrystal- lites (NCs), and phonons away from the Brillouin-zone center will be involved in the Raman scattering, which is well-known as the phonon confinement effect in NCs. This usually gives a downshift and asymmetric broadening of the Raman peak in various NCs. Recently, the A1 mode of 1L MoS2 NCs is found to exhibit a blue shift and asymmetric broadening toward the high-frequency side [Chem. Soc. Rev. 44 (2015) 2757 and Phys. Rev. B 91 (2015) 195411]. In this work, we carefully check this issue by studying Raman spectra of lL MoS2 NCs prepared by the ion implantation technique in a wide range of ion-implanted dosage. The same confinement coefficient is used for both E' and A'1 modes in 1L MoS2 NCs since the phonon uncertainty in an NC is mainly determined by its domain size. The asymmetrical broadening near the A'1 and E' modes is attributed to the appearance of defect-activated phonons at the zone edge and the intrinsic asymmetrical broadening of the two modes, where the anisotropy of phonon dispersion curves along Г-K and Г- M is also considered. The photoluminescence spectra confirm the formation of small domain size of 1L MoS2 nanocrystallites in the ion-implanted 1L MoS2. This study provides not only an approach to quickly probe phonon dispersion trends of 2D materials away from Г by the Raman scattering of the corresponding NCs, but also a reference to completely understand the confinement effect of different modes in various nanomaterials.
文摘In a vast number of engineering fields like medicine,aerospace or robotics,materials are required to meet unusual performances that simple homogeneous materials are often not able to fulfil.Consequently,many efforts are currently devoted to develop future generations of materials with enhanced properties and unusual functionalities.In many instances,biological systems served as a source of inspiration,as in the case of cellular materials.Commonly observed in nature,cellular materials offer useful combinations of structural properties and low weight,yielding the possibility of coexistence of what used to be antagonistic physical properties within a single material.Due to their peculiar characteristics,they are very promising for engineering applications in a variety of industries including aerospace,automotive,marine and constructions.However,their use is conditional upon the development of appropriate constitutive models for revealing the complex relations between the microstructure's parameters and the macroscopic behavior.From this point of view,a great variety of analytical and numerical techniques have been proposed and exhaustively discussed in recent years.Noteworthy contributions,suggesting different assumptions and techniques are critically presented in this review paper.
基金financially supported by the National Key Research and Development Program of China(2021YFD2100904)the National Natural Science Foundation of China(31871729,32172147)+2 种基金the Modern Agriculture key Project of Jiangsu Province of China(BE2022317)the Modern Agricultural Industrial Technology System Construction Project of Jiangsu Province of China(JATS[2021]522)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinations is more significant than a specific food component.This study investigated the lipid-lowering effect of highland barley polyphenols via lipase assay in vitro and HepG2 cells induced by oleic acid(OA).Five indexes,triglyceride(TG),total cholesterol(T-CHO),low density lipoprotein-cholesterol(LDL-C),aspartate aminotransferase(AST),and alanine aminotransferase(ALT),were used to evaluate the lipidlowering effect of highland barley extract.We also preliminary studied the lipid-lowering mechanism by Realtime fluorescent quantitative polymerase chain reaction(q PCR).The results indicated that highland barley extract contains many components with lipid-lowering effects,such as hyperoside and scoparone.In vitro,the lipase assay showed an 18.4%lipase inhibition rate when the additive contents of highland barley extract were 100μg/m L.The intracellular lipid-lowering effect of highland barley extract was examined using 0.25 mmol/L OA-induced HepG2 cells.The results showed that intracellular TG,LDL-C,and T-CHO content decreased by 34.4%,51.2%,and 18.4%,respectively.ALT and AST decreased by 51.6%and 20.7%compared with the untreated hyperlipidemic HepG2 cells.q PCR results showed that highland barley polyphenols could up-regulation the expression of lipid metabolism-related genes such as PPARγand Fabp4.
基金support from the “Joint International Laboratory on Environmental and Energy Frontier Materials”“Innovation Research Team of High-Level Local Universities in Shanghai”support from the National Natural Science Foundation of China (22209103)
文摘Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries.
基金The financial support from the National Natural Science Foun-dation of China(Grant Nos.52074299 and 41941018)the Fundamental Research Funds for the Central Universities of China(Grant No.2023JCCXSB02)are gratefully acknowledged.
文摘To investigate the mechanism of rockburst prevention by spraying water onto the surrounding rocks,15 experiments are performed considering different water absorption levels on a single face.High-speed photography and acoustic emission(AE)system are used to monitor the rockburst process.The effect of water on sandstone rockburst and the prevention mechanism of water on sandstone rockburst are analyzed from the perspective of energy and failure mode.The results show that the higher the ab-sorption degree,the lower the intensity of the rockburst after absorbing water on single side of sand-stone.This is reflected in the fact that with the increase in the water absorption level,the ejection velocity of rockburst fragments is smaller,the depth of the rockburst pit is shallower,and the AE energy is smaller.Under the water absorption level of 100%,the magnitude of rockburst intensity changes from medium to slight.The prevention mechanism of water on sandstone rockburst is that water reduces the capacity of sandstone to store strain energy and accelerates the expansion of shear cracks,which is not conducive to the occurrence of plate cracking before rockburst,and destroys the conditions for rockburst incubation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61006059 and 61774012)Beijing Municipal Natural Science Foundation,China(Grant No.4143059)+3 种基金Beijing Municipal Education Committee,China(Grant No.KM201710005027)Postdoctoral Science Foundation of Beijing,China(Grant No.2015ZZ-11)China Postdoctoral Science Foundation(Grant No.2015M580951)Scientific Research Foundation Project of Beijing Future Chip Technology Innovation Center,China(Grant No.KYJJ2016008)
文摘Based on the thermal network of the two-dimensional heterojunction bipolar transistors(HBTs) array, the thermal resistance matrix is presented, including the self-heating thermal resistance and thermal coupling resistance to describe the self-heating and thermal coupling effects, respectively.For HBT cells along the emitter length direction, the thermal coupling resistance is far smaller than the self-heating thermal resistance, and the peak junction temperature is mainly determined by the self-heating thermal resistance.However, the thermal coupling resistance is in the same order with the self-heating thermal resistance for HBT cells along the emitter width direction.Furthermore, the dependence of the thermal resistance matrix on cell spacing along the emitter length direction and cell spacing along the emitter width direction is also investigated, respectively.It is shown that the moderate increase of cell spacings along the emitter length direction and the emitter width direction could effectively lower the self-heating thermal resistance and thermal coupling resistance,and hence the peak junction temperature is decreased, which sheds light on adopting a two-dimensional non-uniform cell spacing layout to improve the uneven temperature distribution.By taking a 2 × 6 HBTs array for example, a twodimensional non-uniform cell spacing layout is designed, which can effectively lower the peak junction temperature and reduce the non-uniformity of the dissipated power.For the HBTs array with optimized layout, the high power-handling capability and thermal dissipation capability are kept when the bias voltage increases.
基金Project supported by the National Natural Science Foundation of China (Grant No.11974379)the National Key Basic Research and Development Program of China (Grant No.2021YFC2203400)Jiangsu Vocational Education Integrated Circuit Technology “Double-Qualified” Famous Teacher Studio (Grant No.2022-13)。
文摘Graphene, with its zero-bandgap electronic structure, is a highly promising ultra-broadband light absorbing material.However, the performance of graphene-based photodetectors is limited by weak absorption efficiency and rapid recombination of photoexcited carriers, leading to poor photodetection performance. Here, inspired by the photogating effect, we demonstrated a highly sensitive photodetector based on graphene/WSe_(2) vertical heterostructure where the WSe_(2) layer acts as both the light absorption layer and the localized grating layer. The graphene conductive channel is induced to produce more carriers by capacitive coupling. Due to the strong light absorption and high external quantum efficiency of multilayer WSe_(2), as well as the high carrier mobility of graphene, a high photocurrent is generated in the vertical heterostructure. As a result, the photodetector exhibits ultra-high responsivity of 3.85×10~4A/W and external quantum efficiency of 1.3 × 10~7%.This finding demonstrates that photogating structures can effectively enhance the sensitivity of graphene-based photodetectors and may have great potential applications in future optoelectronic devices.
基金supported by the National Natural Science Foundation of China(21972131)。
文摘In this study,we systematically investigated the effect of proton concentration on the kinetics of the oxygen reduction reaction(ORR)on Pt(111)in acidic solutions.Experimental results demonstrate a rectangular hyperbolic relationship,i.e.,the ORR current excluding the effect of other variables increases with proton concentration and then tends to a constant value.We consider that this is caused by the limitation of ORR kinetics by the trace oxygen concentration in the solution,which determines the upper limit of ORR kinetics.A model of effective concentration is further proposed for rectangular hyperbolic relationships:when the reactant concentration is high enough to reach a critical saturation concentration,the effective reactant concentration will become a constant value.This could be due to the limited concentration of a certain reactant for reactions involving more than one reactant or the limited number of active sites available on the catalyst.Our study provides new insights into the kinetics of electrocatalytic reactions,and it is important for the proper evaluation of catalyst activity and the study of structureperformance relationships.