As a zero-carbon fuel,hydrogen can be produced via electrochemical water splitting using clean electric energy by the hydrogen evolution reaction(HER)process.The ultimate goal of HER catalyst is to replace the expensi...As a zero-carbon fuel,hydrogen can be produced via electrochemical water splitting using clean electric energy by the hydrogen evolution reaction(HER)process.The ultimate goal of HER catalyst is to replace the expensive Pt metal benchmark with a cheap one with equivalent activities.In this work,we investigated the possibility of HER process on single-atom catalysts(SACs)doped on two-dimensional(2D)GaPS_(4)materials,which have a large intrinsic band gap that can be regulated by doping and tensile strain.Based on the machine learning regression analysis,we can expand the prediction of HER performance to more catalysts without expensive DFT calculation.The electron affinity and first ionization energy are the two most important descriptors related to the HER behavior.Furthermore,constrain molecular dynamics with solvation models and constant potentials were applied to understand the dynamics barrier of HER process of Pt SAC on GaPS_(4)materials.These findings not only provide important insights into the catalytic properties of single-atom catalysts on GaPS_(4)2D materials,but also provides theoretical guidance paradigm for exploration of new catalysts.展开更多
Two-dimensional materials(2D)with unique physicochemical properties have been widely studied for their use in many applications,including as hydrogen evolution catalysts to improve the efficiency of water splitting.Re...Two-dimensional materials(2D)with unique physicochemical properties have been widely studied for their use in many applications,including as hydrogen evolution catalysts to improve the efficiency of water splitting.Recently,typical 2D materials MoS2,graphene,MXenes,and black phosphorus have been widely investigated for their application in the hydrogen evolution reaction(HER).In this review,we summarize three efficient strategies—defect engineering,heterostructure formation,and heteroatom doping—for improving the HER performance of 2D catalysts.The d-band theory,density of states,and Fermi energy level are discussed to provide guidance for the design and construction of novel 2D materials.The challenges and prospects of 2D materials in the HER are also considered.展开更多
Single-atom(SA)catalysts with nearly 100%atom utilization have been widely employed in electrolysis for decades,due to the outperforming catalytic activity and selectivity.However,most of the reported SA catalysts are...Single-atom(SA)catalysts with nearly 100%atom utilization have been widely employed in electrolysis for decades,due to the outperforming catalytic activity and selectivity.However,most of the reported SA catalysts are fixed through the strong bonding between the dispersed single metallic atoms with nonmetallic atoms of the substrates,which greatly limits the controllable regulation of electrocatalytic activity of SA catalysts.In this work,Pt-Ni bonded Pt SA catalyst with adjustable electronic states was successfully constructed through a controllable electrochemical reduction on the coordination unsaturated amorphous Ni(OH)_(2)nanosheet arrays.Based on the X-ray absorption fine structure analysis and first-principles calculations,Pt SA was bonded with Ni sites of amorphous Ni(OH)_(2),rather than conventional O sites,resulting in negatively charged Pt^(δ-).In situ Raman spectroscopy revealed that the changed configuration and electronic states greatly enhanced absorbability for activated hydrogen atoms,which were the essential intermediate for alkaline hydrogen evolution reaction.The hydrogen spillover process was revealed from amorphous Ni(OH)_(2)that effectively cleave the H-O-H bond of H_(2)O and produce H atom to the Pt SA sites,leading to a low overpotential of 48 mV in alkaline electrolyte at-1000 mA cm^(-2)mg^(-1)_(Pt),evidently better than commercial Pt/C catalysts.This work provided new strategy for the control-lable modulation of the local structure of SA catalysts and the systematic regulation of the electronic states.展开更多
We report on the formation of two-dimensional monolayer AgTe crystal on Ag(111) substrates. The samples are prepared in ultrahigh vacuum by deposition of Te on Ag(111) followed by annealing. Using a scanning tunneling...We report on the formation of two-dimensional monolayer AgTe crystal on Ag(111) substrates. The samples are prepared in ultrahigh vacuum by deposition of Te on Ag(111) followed by annealing. Using a scanning tunneling microscope(STM) and low electron energy diffraction(LEED), we investigate the atomic structure of the samples.The STM images and the LEED pattern show that monolayer AgTe crystal is formed on Ag(111). Four kinds of atomic structures of AgTe and Ag(111) are observed:(i) flat honeycomb structure,(ii) bulked honeycomb,(iii)stripe structure,(iv) hexagonal structure. The structural analysis indicates that the formation of the different atomic structures is due to the lattice mismatch and relief of the intrinsic strain in the AgTe layer. Our results provide a simple and convenient method to produce monolayer AgTe atomic crystal on Ag(111) and a template for study of novel physical properties and for future quantum devices.展开更多
Hydrogen spillover effect has recently garnered a lot of attention in the field of electrocatalytic hydrogen evolution reactions.A new avenue for understanding the dynamic behavior of atomic migration in which hydroge...Hydrogen spillover effect has recently garnered a lot of attention in the field of electrocatalytic hydrogen evolution reactions.A new avenue for understanding the dynamic behavior of atomic migration in which hydrogen atoms moving on a catalyst surface was opened up by the setup of the word"hydrogen spillover."However,there is currently a dearth of thorough knowledge regarding the hydrogen spillover effect.Currently,the advancement of sophisticated characterization procedures offers progressively useful information to enhance our grasp of the hydrogen spillover effect.The understanding of material fabrication for hydrogen spillover effect has erupted.Considering these factors,we made an effort to review most of the articles published on the hydrogen spillover effect and carefully analyzed the aspect of material fabrication.All of our attention has been directed toward the molecular pathway that leads to improve hydrogen evolution reactions performance.In addition,we have attempted to elucidate the spillover paths through the utilization of DFT calculations.Furthermore,we provide some preliminary research suggestions and highlight the opportunities and obstacles that are still to be confronted in this study area.展开更多
Strategically designing the electrocatalytic system and cleverly inducing strain is an effective approach to balance the cost and activity of Pt-based electrocatalysts for industrial-scale hydrogen production.Herein,w...Strategically designing the electrocatalytic system and cleverly inducing strain is an effective approach to balance the cost and activity of Pt-based electrocatalysts for industrial-scale hydrogen production.Herein,we present a unipolar pulsed electrodeposition(UPED) strategy to induce strain in the Ni lattice by introducing trace amounts of Pt single atoms(SAs)(0.22 wt%).The overpotential decreased by 183 mV at 10 mA cm^(-2) in 1.0 M KOH after introducing trace amounts of Pt_(SAs).The industrial electrolyzer,assembled with Pt_(SAs)Ni cathode and a commercial NiFeO_(x) anode,requires a cell voltage of 1.90 V to attain 1 A cm^(-2) of current density and remains stable for 280 h,demonstrating significant potential for practical applications.Spherical aberration corrected scanning transmission electron microscopy(AC-STEM),X-ray absorption(XAS),and geometric phase analysis(GPA) indicate that the introduction of trace amounts of Pt SAs induces tensile strain in the Ni lattice,thereby altering the local electronic structure and coordination environment around cubic Ni for enhancing the water decomposition kinetics and fundamentally changing the reaction pathway.The doping-strain strategy showcases conformational relationships that could offer new ideas to construct efficient hydrogen evolution reaction(HER) electrocatalysts for industrial hydrogen production in the future.展开更多
Direct-write atom lithography,one of the potential nanofabrication techniques,is restricted by some difficulties in producing optical masks for the deposition of complex structures.In order to make further progress,a ...Direct-write atom lithography,one of the potential nanofabrication techniques,is restricted by some difficulties in producing optical masks for the deposition of complex structures.In order to make further progress,a structured mirror array is developed to transversely collimate the chromium atomic beam in two dimensions.The best collimation is obtained when the laser red detunes by natural line-width of transition 7S3 → 7P40 of the chromium atom.The collimation ratio is 0.45 vertically(in x axis),and it is 0.55 horizontally(in y axis).The theoretical model is also simulated,and success of our structured mirror array is achieved.展开更多
Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is report...Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is reported to fabricate Pd nanoparticle catalyst over γ-Al_(2)O_(3)or Fe_(2)O_(3)/γ-Al_(2)O_(3)support,using palladium hexafluoroacetylacetonate as the Pd precursor and H_(2)plasma as counter-reactant.Scanning transmission electron microscopy exhibits that highdensity Pd nanoparticles are uniformly dispersed over Fe_(2)O_(3)/γ-Al_(2)O_(3)support with an average diameter of 4.4 nm.The deposited Pd-Fe_(2)O_(3)/γ-Al_(2)O_(3)shows excellent catalytic performance for CO_(2)hydrogenation in a dielectric barrier discharge reactor.Under a typical condition of H_(2)to CO_(2)ratio of 4 in the feed gas,the discharge power of 19.6 W,and gas hourly space velocity of10000 h^(-1),the conversion of CO_(2)is as high as 16.3% with CH_(3)OH and CH4selectivities of 26.5%and 3.9%,respectively.展开更多
In this paper,we report,for the first time,on the electrochemical catalytic activity of 2D titanium carbonitride MXene for hydrogen evolution reaction(HER).According to our study,2D titanium carbonitride exhibited muc...In this paper,we report,for the first time,on the electrochemical catalytic activity of 2D titanium carbonitride MXene for hydrogen evolution reaction(HER).According to our study,2D titanium carbonitride exhibited much higher electrocatalytic activity than its carbide analogues,achieving an onset overpotential of 53 mV and Tafel slope of 86 mV dec^(-1),superior to the titanium carbide with onset overpotential of 649 mV and Tafel slope of 303 mV dec^(-1).The obtained onset overpotential for 2D titanium carbonitride is lower than those of all the reported transition metal carbides MXene catalysts without additives,so far.Density functional theory calculations were conducted to further understand the electrochemical performance.The calculation results show that a greater number of occupied states are active for Ti_(3)CNO_(2),revealing free energy for the adsorption of atomic hydrogen closer to 0 than that of Ti_(3)C_(2)O_(2).Both experimental and calculation studies demonstrate the excellent electrocatalytic behavior of titanium carbonitride.The investigation of 2D titanium carbonitride opens up a promising paradigm for the conscious design of high-performance non-precious metal catalyst for hydrogen generation.展开更多
We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven four-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found th...We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven four-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of 2D atom localization can be significantly improved via adjusting the system parameters. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization.展开更多
Two-dimensional(2D)ferroelectric compounds are a special class of materials that meet the need for devices miniaturization,which can lead to a wide range of applications.Here,we investigate ferroelectric properties of...Two-dimensional(2D)ferroelectric compounds are a special class of materials that meet the need for devices miniaturization,which can lead to a wide range of applications.Here,we investigate ferroelectric properties of monolayer group-IV monochalcogenides MX(M=Sn,Ge;X=Se,Te,S)via strain engineering,and their effects with contaminated hydrogen are also discussed.GeSe,GeTe,and GeS do not go through transition up to the compressive strain of-5%,and consequently have good ferroelectric parameters for device applications that can be further improved by applying strain.According to the calculated ferroelectric properties and the band gaps of these materials,we find that their band gap can be adjusted by strain for excellent photovoltaic applications.In addition,we have determined the most stable hydrogen occupancy location in the monolayer SnS and SnTe.It reveals that H prefers to absorb on SnS and SnTe monolayers as molecules rather than atomic H.As a result,hydrogen molecules have little effect on the polarization and electronic structure of monolayer SnTe and SnS.展开更多
A series of soy protein isolate(SPI)films plasticized by glycerol(Gly)were studied using attenuated total reflectance-Fourier transform infrared spectroscopy(ATR/FTIR).Perturbation-correlation movingwindow two-dimensi...A series of soy protein isolate(SPI)films plasticized by glycerol(Gly)were studied using attenuated total reflectance-Fourier transform infrared spectroscopy(ATR/FTIR).Perturbation-correlation movingwindow two-dimensional(PCMW2D)and two-dimensional correlation(2DCOS)analyses were applied to the amideⅠband and thus the hydrogen bond interaction between SPI and Gly was systematically investigated.When Gly concentrations were in the range 0~35%,the hydrogen bond amongβ-sheets was replaced by the one between SPI chain and Gly molecule,which caused these protein chains being changed toα-helix.However,the transformation ofβ-sheet toα-helix was saturated and both of them tend to change to random coil when Gly concentrations were in the range 35%~60%.展开更多
In the present paper, we investigate the behavior of two-dimensional atom localization in a five-level M-scheme atomic system driven by two orthogonal standing-wave fields. We find that the precision and resolution of...In the present paper, we investigate the behavior of two-dimensional atom localization in a five-level M-scheme atomic system driven by two orthogonal standing-wave fields. We find that the precision and resolution of the atom localization depends on the probe field detuning significantly. And because of the effect of the microwave field, an atom can be located at a particular position via adjusting the system parameters.展开更多
In this paper we find that a set of energy eigenstates of a two-dimensional anisotropic harmonic potential in a uniform magnetic field is classified as the atomic coherent states |τ) in terms of the spin values of ...In this paper we find that a set of energy eigenstates of a two-dimensional anisotropic harmonic potential in a uniform magnetic field is classified as the atomic coherent states |τ) in terms of the spin values of j in the Schwinger bosonic realization. The correctness of the above conclusions can be verified by virtue of the entangled state 〈η| representation of the state |τ).展开更多
We report the experimental observation of two-dimensional Talbot effect when a resonance plane wave interacts with a two-dimensional atomic density grating generated by standing wave manipulation of ultracold Bose gas...We report the experimental observation of two-dimensional Talbot effect when a resonance plane wave interacts with a two-dimensional atomic density grating generated by standing wave manipulation of ultracold Bose gases. Clear self-images of the grating and sub-images with reversed phase or fractal patterns are observed. By calculating the autocorrelation functions of the images, the behavior of periodic Talbot images is studied. The Talbot effect with two-dimensional atomic density grating expands the applications of the Talbot effect in a wide variety of research fields.展开更多
In atomic dynamics, oscillation Mong different axes can be studied separately in the harmonic trap. When the trap is not harmonic, motion in different directions may couple together. In this work, we observe a two- di...In atomic dynamics, oscillation Mong different axes can be studied separately in the harmonic trap. When the trap is not harmonic, motion in different directions may couple together. In this work, we observe a two- dimensional oscillation by exciting atoms in one direction, where the atoms are transferred to an anharmonic region. Theoretical calculations are coincident to the experimental results. These oscillations in two dimensions not only can be used to measure trap parameters but also have potential applications in atomic interferometry and precise measurements.展开更多
The reactions of anionic zirconium oxide clusters ZrxOy- with C2H6 and C4H10 are investi-gated by a time of flight mass spectrometer coupled with a laser vaporization cluster source.Hydrogen containing products Zr2O5H...The reactions of anionic zirconium oxide clusters ZrxOy- with C2H6 and C4H10 are investi-gated by a time of flight mass spectrometer coupled with a laser vaporization cluster source.Hydrogen containing products Zr2O5H- and Zr3O7H- are observed after the reaction. Den-sity functional theory calculations indicate that the hydrogen abstraction is favorable in the reaction of Zr2O5- with C2H6, which supports that the observed Zr2O5H- and Zr3O7H- are due to hydrogen atom abstraction from the alkane molecules. This work shows a newpossible pathway in the reaction of zirconium oxide cluster anions with alkane molecules.展开更多
A two-dimensional generalized Langevin equation is proposed to describe the protein conformational change, compatible to the electron transfer process governed by atomic packing density model. We assume a fractional G...A two-dimensional generalized Langevin equation is proposed to describe the protein conformational change, compatible to the electron transfer process governed by atomic packing density model. We assume a fractional Gaussian noise and a white noise through bond and through space coordinates respectively, and introduce the coupling effect coming from both fluctuations and equilibrium variances. The general expressions for autocorrelation functions of distance fluctuation and fluorescence lifetime variation are derived, based on which the exact conformational change dynamics can be evaluated with the aid of numerical Laplace inversion technique. We explicitly elaborate the short time and long time approximations. The relationship between the two-diraensional description and the one-dimensional theory is also discussed.展开更多
A heat transfer study was conducted,in the framework of Computational Fluid Dynamics(CFD),on a Hot-Wire Chemical Vapour Deposition(HWCVD)reactor chamber to determine a safe deposition distance for atomic hydrogen prod...A heat transfer study was conducted,in the framework of Computational Fluid Dynamics(CFD),on a Hot-Wire Chemical Vapour Deposition(HWCVD)reactor chamber to determine a safe deposition distance for atomic hydrogen produced by HWCVD.The objective of this study was to show the feasibility of using heat transfer simulations in determining a safe deposition distance for deposition of this kind.All CFD simulations were set-up and solved within the framework of the CFD packages of OpenFOAM namely;snappyHexMesh for mesh generation,buoyantSimpleFoam and rhoSimpleFoam as the solvers and paraView as the post-processing tool.Using a standard set of deposition parameters for the production of atomic hydrogen by HWCVD,plots of the gas temperature in the deposition region were produced.From these plots,we were able to determine a safe deposition distance in the HWCVD reactor to be in the range between 3 and 4 cm from the filament.展开更多
Hydrogen generation from formic acid (FA) has received significant attention. The challenge is to obtain a highly active catalyst under mild conditions for practical applications. Here atomic layer deposition (ALD...Hydrogen generation from formic acid (FA) has received significant attention. The challenge is to obtain a highly active catalyst under mild conditions for practical applications. Here atomic layer deposition (ALD) of FeOx was performed to deposit an ultrathin oxide coating layer to a Pd/C catalyst, therein the FeOx coverage was precisely controlled by ALD cycles. Transmission electron microscopy and powder X-ray diffraction measurements suggest that the FeOx coating layer improved the thermal stability of Pd nanoparticles (NPs). X-ray photoelectron spectroscopy measurement showed that deposition of FeOx on the Pd NPs caused a positive shift of Pd3d binding energy. In the FA dehydrogenation reaction, the ultrathin FeOx layer on the Pd/C could considerably improve the catalytic activity, and Pd/C coated with 8 cycles of FeOx showed an optimized activity with turnover frequency being about 2 times higher than the uncoated one. shape as a function of the number of FeOx ALD The improved activities were in a volcanocycles, indicating the coverage of FeOx is critical for the optimized activity. In summary, simultaneous improvements of activity and thermal stability of Pd/C catalyst by ultra-thin FeOx overlayer suggest to be an effective way to design active catalysts for the FA dehydrogenation reaction.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.12164009),which is received by Xuefei Liuthe Guizhou Science and Technology Foundation-ZK[2022]General 308,which is received by Xuefei Liu+2 种基金Top scientific and technological talents in Guizhou Province of Qian Jiaoji[2022]No.078,which is received by Xuefei LiuGraduate Research Fund Project of Guizhou Province (YJSKYJJ[2021]088),which is received by Tianyun Liuthe Haihe Laboratory of Sustainable Chemical Transformation for financial support。
文摘As a zero-carbon fuel,hydrogen can be produced via electrochemical water splitting using clean electric energy by the hydrogen evolution reaction(HER)process.The ultimate goal of HER catalyst is to replace the expensive Pt metal benchmark with a cheap one with equivalent activities.In this work,we investigated the possibility of HER process on single-atom catalysts(SACs)doped on two-dimensional(2D)GaPS_(4)materials,which have a large intrinsic band gap that can be regulated by doping and tensile strain.Based on the machine learning regression analysis,we can expand the prediction of HER performance to more catalysts without expensive DFT calculation.The electron affinity and first ionization energy are the two most important descriptors related to the HER behavior.Furthermore,constrain molecular dynamics with solvation models and constant potentials were applied to understand the dynamics barrier of HER process of Pt SAC on GaPS_(4)materials.These findings not only provide important insights into the catalytic properties of single-atom catalysts on GaPS_(4)2D materials,but also provides theoretical guidance paradigm for exploration of new catalysts.
文摘Two-dimensional materials(2D)with unique physicochemical properties have been widely studied for their use in many applications,including as hydrogen evolution catalysts to improve the efficiency of water splitting.Recently,typical 2D materials MoS2,graphene,MXenes,and black phosphorus have been widely investigated for their application in the hydrogen evolution reaction(HER).In this review,we summarize three efficient strategies—defect engineering,heterostructure formation,and heteroatom doping—for improving the HER performance of 2D catalysts.The d-band theory,density of states,and Fermi energy level are discussed to provide guidance for the design and construction of novel 2D materials.The challenges and prospects of 2D materials in the HER are also considered.
基金supported by National Natural Science Foundation of China(52373221,U1910208,52250119)the National Key R&D Program of China(2020YFA0710403)the Scientific Research Fund of Hunan Provincial Education Department(NO.23B0114).
文摘Single-atom(SA)catalysts with nearly 100%atom utilization have been widely employed in electrolysis for decades,due to the outperforming catalytic activity and selectivity.However,most of the reported SA catalysts are fixed through the strong bonding between the dispersed single metallic atoms with nonmetallic atoms of the substrates,which greatly limits the controllable regulation of electrocatalytic activity of SA catalysts.In this work,Pt-Ni bonded Pt SA catalyst with adjustable electronic states was successfully constructed through a controllable electrochemical reduction on the coordination unsaturated amorphous Ni(OH)_(2)nanosheet arrays.Based on the X-ray absorption fine structure analysis and first-principles calculations,Pt SA was bonded with Ni sites of amorphous Ni(OH)_(2),rather than conventional O sites,resulting in negatively charged Pt^(δ-).In situ Raman spectroscopy revealed that the changed configuration and electronic states greatly enhanced absorbability for activated hydrogen atoms,which were the essential intermediate for alkaline hydrogen evolution reaction.The hydrogen spillover process was revealed from amorphous Ni(OH)_(2)that effectively cleave the H-O-H bond of H_(2)O and produce H atom to the Pt SA sites,leading to a low overpotential of 48 mV in alkaline electrolyte at-1000 mA cm^(-2)mg^(-1)_(Pt),evidently better than commercial Pt/C catalysts.This work provided new strategy for the control-lable modulation of the local structure of SA catalysts and the systematic regulation of the electronic states.
基金Supported by the National Key Research&Development Projects of China under Grant Nos 2016YFA0202300 and 2018FYA0305800the National Natural Science Foundation of China under Grant Nos 61390501,61474141 and 11604373+1 种基金the CAS Pioneer Hundred Talents Programthe Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB28000000
文摘We report on the formation of two-dimensional monolayer AgTe crystal on Ag(111) substrates. The samples are prepared in ultrahigh vacuum by deposition of Te on Ag(111) followed by annealing. Using a scanning tunneling microscope(STM) and low electron energy diffraction(LEED), we investigate the atomic structure of the samples.The STM images and the LEED pattern show that monolayer AgTe crystal is formed on Ag(111). Four kinds of atomic structures of AgTe and Ag(111) are observed:(i) flat honeycomb structure,(ii) bulked honeycomb,(iii)stripe structure,(iv) hexagonal structure. The structural analysis indicates that the formation of the different atomic structures is due to the lattice mismatch and relief of the intrinsic strain in the AgTe layer. Our results provide a simple and convenient method to produce monolayer AgTe atomic crystal on Ag(111) and a template for study of novel physical properties and for future quantum devices.
基金supported by Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea(Grant Nos.RS-2023-00284361 and 2021R1A2C2091497)supported by the Nano&Materials Technology Development Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(RS-2024-00436563)
文摘Hydrogen spillover effect has recently garnered a lot of attention in the field of electrocatalytic hydrogen evolution reactions.A new avenue for understanding the dynamic behavior of atomic migration in which hydrogen atoms moving on a catalyst surface was opened up by the setup of the word"hydrogen spillover."However,there is currently a dearth of thorough knowledge regarding the hydrogen spillover effect.Currently,the advancement of sophisticated characterization procedures offers progressively useful information to enhance our grasp of the hydrogen spillover effect.The understanding of material fabrication for hydrogen spillover effect has erupted.Considering these factors,we made an effort to review most of the articles published on the hydrogen spillover effect and carefully analyzed the aspect of material fabrication.All of our attention has been directed toward the molecular pathway that leads to improve hydrogen evolution reactions performance.In addition,we have attempted to elucidate the spillover paths through the utilization of DFT calculations.Furthermore,we provide some preliminary research suggestions and highlight the opportunities and obstacles that are still to be confronted in this study area.
基金National Natural Science Foundation of China (grants U22A20418, 22075196, and 21878204)Research Project Supported by Shanxi Scholarship Council of China (2022-050)。
文摘Strategically designing the electrocatalytic system and cleverly inducing strain is an effective approach to balance the cost and activity of Pt-based electrocatalysts for industrial-scale hydrogen production.Herein,we present a unipolar pulsed electrodeposition(UPED) strategy to induce strain in the Ni lattice by introducing trace amounts of Pt single atoms(SAs)(0.22 wt%).The overpotential decreased by 183 mV at 10 mA cm^(-2) in 1.0 M KOH after introducing trace amounts of Pt_(SAs).The industrial electrolyzer,assembled with Pt_(SAs)Ni cathode and a commercial NiFeO_(x) anode,requires a cell voltage of 1.90 V to attain 1 A cm^(-2) of current density and remains stable for 280 h,demonstrating significant potential for practical applications.Spherical aberration corrected scanning transmission electron microscopy(AC-STEM),X-ray absorption(XAS),and geometric phase analysis(GPA) indicate that the introduction of trace amounts of Pt SAs induces tensile strain in the Ni lattice,thereby altering the local electronic structure and coordination environment around cubic Ni for enhancing the water decomposition kinetics and fundamentally changing the reaction pathway.The doping-strain strategy showcases conformational relationships that could offer new ideas to construct efficient hydrogen evolution reaction(HER) electrocatalysts for industrial hydrogen production in the future.
基金Project supported by the Shanghai Nanoscience Foundation,China (Grant Nos. 0852nm07000 and 0952nm07000)the National Natural Science Foundation of China (Grant Nos. 10804084 and 91123022)+1 种基金the National Key Technology R & D Program,China (Grant No. 2006BAF06B08)the Specialized Research Fund for the Doctoral Program of Ministry of High Education of China (Grant No. 200802471008)
文摘Direct-write atom lithography,one of the potential nanofabrication techniques,is restricted by some difficulties in producing optical masks for the deposition of complex structures.In order to make further progress,a structured mirror array is developed to transversely collimate the chromium atomic beam in two dimensions.The best collimation is obtained when the laser red detunes by natural line-width of transition 7S3 → 7P40 of the chromium atom.The collimation ratio is 0.45 vertically(in x axis),and it is 0.55 horizontally(in y axis).The theoretical model is also simulated,and success of our structured mirror array is achieved.
基金financially supported by National Natural Science Foundation of China (Nos. 12075032 and 12105021)Beijing Municipal Natural Science Foundation (Nos.8222055 and 2232061)+1 种基金Yunnan Police College Project (No. YJKF002)Beijing Institute of Graphic Communication Project (No. Ec202207)。
文摘Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is reported to fabricate Pd nanoparticle catalyst over γ-Al_(2)O_(3)or Fe_(2)O_(3)/γ-Al_(2)O_(3)support,using palladium hexafluoroacetylacetonate as the Pd precursor and H_(2)plasma as counter-reactant.Scanning transmission electron microscopy exhibits that highdensity Pd nanoparticles are uniformly dispersed over Fe_(2)O_(3)/γ-Al_(2)O_(3)support with an average diameter of 4.4 nm.The deposited Pd-Fe_(2)O_(3)/γ-Al_(2)O_(3)shows excellent catalytic performance for CO_(2)hydrogenation in a dielectric barrier discharge reactor.Under a typical condition of H_(2)to CO_(2)ratio of 4 in the feed gas,the discharge power of 19.6 W,and gas hourly space velocity of10000 h^(-1),the conversion of CO_(2)is as high as 16.3% with CH_(3)OH and CH4selectivities of 26.5%and 3.9%,respectively.
基金supported by Tulane University.M.K.acknowledges the support by the US Department of Energy under EPSCoR Grant No.DE-SC0012432 with additional support from the Louisiana Board of Regents.
文摘In this paper,we report,for the first time,on the electrochemical catalytic activity of 2D titanium carbonitride MXene for hydrogen evolution reaction(HER).According to our study,2D titanium carbonitride exhibited much higher electrocatalytic activity than its carbide analogues,achieving an onset overpotential of 53 mV and Tafel slope of 86 mV dec^(-1),superior to the titanium carbide with onset overpotential of 649 mV and Tafel slope of 303 mV dec^(-1).The obtained onset overpotential for 2D titanium carbonitride is lower than those of all the reported transition metal carbides MXene catalysts without additives,so far.Density functional theory calculations were conducted to further understand the electrochemical performance.The calculation results show that a greater number of occupied states are active for Ti_(3)CNO_(2),revealing free energy for the adsorption of atomic hydrogen closer to 0 than that of Ti_(3)C_(2)O_(2).Both experimental and calculation studies demonstrate the excellent electrocatalytic behavior of titanium carbonitride.The investigation of 2D titanium carbonitride opens up a promising paradigm for the conscious design of high-performance non-precious metal catalyst for hydrogen generation.
基金the National Natural Science Foundation of China(Grant No.11205001)the National Basic Research Program of China(Grant No.2010CB234607)the Postdoctoral Science Foundation of Anhui University,China
文摘We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven four-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of 2D atom localization can be significantly improved via adjusting the system parameters. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization.
基金the National Natural Science Foundation of China(NSFC)(Grant No.12074126)the Foundation for Innovative Research Groups of NSFC(Grant No.51621001)the Fundamental Research Funds for the Central Universities(Grant No.2020ZYGXZR076).
文摘Two-dimensional(2D)ferroelectric compounds are a special class of materials that meet the need for devices miniaturization,which can lead to a wide range of applications.Here,we investigate ferroelectric properties of monolayer group-IV monochalcogenides MX(M=Sn,Ge;X=Se,Te,S)via strain engineering,and their effects with contaminated hydrogen are also discussed.GeSe,GeTe,and GeS do not go through transition up to the compressive strain of-5%,and consequently have good ferroelectric parameters for device applications that can be further improved by applying strain.According to the calculated ferroelectric properties and the band gaps of these materials,we find that their band gap can be adjusted by strain for excellent photovoltaic applications.In addition,we have determined the most stable hydrogen occupancy location in the monolayer SnS and SnTe.It reveals that H prefers to absorb on SnS and SnTe monolayers as molecules rather than atomic H.As a result,hydrogen molecules have little effect on the polarization and electronic structure of monolayer SnTe and SnS.
文摘A series of soy protein isolate(SPI)films plasticized by glycerol(Gly)were studied using attenuated total reflectance-Fourier transform infrared spectroscopy(ATR/FTIR).Perturbation-correlation movingwindow two-dimensional(PCMW2D)and two-dimensional correlation(2DCOS)analyses were applied to the amideⅠband and thus the hydrogen bond interaction between SPI and Gly was systematically investigated.When Gly concentrations were in the range 0~35%,the hydrogen bond amongβ-sheets was replaced by the one between SPI chain and Gly molecule,which caused these protein chains being changed toα-helix.However,the transformation ofβ-sheet toα-helix was saturated and both of them tend to change to random coil when Gly concentrations were in the range 35%~60%.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60768001 and 10464002)
文摘In the present paper, we investigate the behavior of two-dimensional atom localization in a five-level M-scheme atomic system driven by two orthogonal standing-wave fields. We find that the precision and resolution of the atom localization depends on the probe field detuning significantly. And because of the effect of the microwave field, an atom can be located at a particular position via adjusting the system parameters.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10574060)the Natural Science Foundation of Shandong Province of China (Grant No. Y2008A23)the Shandong Provincal Higher Educational Science and Technology Program of China (Grant Nos. J09LA07 and J10LA15)
文摘In this paper we find that a set of energy eigenstates of a two-dimensional anisotropic harmonic potential in a uniform magnetic field is classified as the atomic coherent states |τ) in terms of the spin values of j in the Schwinger bosonic realization. The correctness of the above conclusions can be verified by virtue of the entangled state 〈η| representation of the state |τ).
基金Supported by the State Key Development Program for Basic Research of China under Grant No 2016YFA0301501the National Natural Science Foundation of China under Grant Nos 11504328,61475007,11334001 and 91336103
文摘We report the experimental observation of two-dimensional Talbot effect when a resonance plane wave interacts with a two-dimensional atomic density grating generated by standing wave manipulation of ultracold Bose gases. Clear self-images of the grating and sub-images with reversed phase or fractal patterns are observed. By calculating the autocorrelation functions of the images, the behavior of periodic Talbot images is studied. The Talbot effect with two-dimensional atomic density grating expands the applications of the Talbot effect in a wide variety of research fields.
基金Supported by the State Key Development Program for Basic Research of China under Grant No 2016YFA0301501the National Natural Science Foundation of China under Grant Nos 61475007,11334001 and 91336103
文摘In atomic dynamics, oscillation Mong different axes can be studied separately in the harmonic trap. When the trap is not harmonic, motion in different directions may couple together. In this work, we observe a two- dimensional oscillation by exciting atoms in one direction, where the atoms are transferred to an anharmonic region. Theoretical calculations are coincident to the experimental results. These oscillations in two dimensions not only can be used to measure trap parameters but also have potential applications in atomic interferometry and precise measurements.
基金This work was supported by the Chinese Academy of Sciences (Hundred Talents Fund), the National Natural Science Foundation of China (No.20703048 and No.20803083), and the Center of Molecular Science Foundation of Institute of Chemistry, Chinese Academy of Sciences (No.CMS-LX200902).
文摘The reactions of anionic zirconium oxide clusters ZrxOy- with C2H6 and C4H10 are investi-gated by a time of flight mass spectrometer coupled with a laser vaporization cluster source.Hydrogen containing products Zr2O5H- and Zr3O7H- are observed after the reaction. Den-sity functional theory calculations indicate that the hydrogen abstraction is favorable in the reaction of Zr2O5- with C2H6, which supports that the observed Zr2O5H- and Zr3O7H- are due to hydrogen atom abstraction from the alkane molecules. This work shows a newpossible pathway in the reaction of zirconium oxide cluster anions with alkane molecules.
基金This work was supported by the National Natural Science Foundation of China (No.20973119 and No.21033008).
文摘A two-dimensional generalized Langevin equation is proposed to describe the protein conformational change, compatible to the electron transfer process governed by atomic packing density model. We assume a fractional Gaussian noise and a white noise through bond and through space coordinates respectively, and introduce the coupling effect coming from both fluctuations and equilibrium variances. The general expressions for autocorrelation functions of distance fluctuation and fluorescence lifetime variation are derived, based on which the exact conformational change dynamics can be evaluated with the aid of numerical Laplace inversion technique. We explicitly elaborate the short time and long time approximations. The relationship between the two-diraensional description and the one-dimensional theory is also discussed.
文摘A heat transfer study was conducted,in the framework of Computational Fluid Dynamics(CFD),on a Hot-Wire Chemical Vapour Deposition(HWCVD)reactor chamber to determine a safe deposition distance for atomic hydrogen produced by HWCVD.The objective of this study was to show the feasibility of using heat transfer simulations in determining a safe deposition distance for deposition of this kind.All CFD simulations were set-up and solved within the framework of the CFD packages of OpenFOAM namely;snappyHexMesh for mesh generation,buoyantSimpleFoam and rhoSimpleFoam as the solvers and paraView as the post-processing tool.Using a standard set of deposition parameters for the production of atomic hydrogen by HWCVD,plots of the gas temperature in the deposition region were produced.From these plots,we were able to determine a safe deposition distance in the HWCVD reactor to be in the range between 3 and 4 cm from the filament.
基金This work was supported by the National Natural Science Foundation of China (No.51402283 and No.21473169), One Thousand Young Talents Program under the Recruitment Program of Global Experts, the Fundamental Research Funds for the Central Universi- ties (No.WK2060030017), and the Startup Funds from University of Science and Technology of China.
文摘Hydrogen generation from formic acid (FA) has received significant attention. The challenge is to obtain a highly active catalyst under mild conditions for practical applications. Here atomic layer deposition (ALD) of FeOx was performed to deposit an ultrathin oxide coating layer to a Pd/C catalyst, therein the FeOx coverage was precisely controlled by ALD cycles. Transmission electron microscopy and powder X-ray diffraction measurements suggest that the FeOx coating layer improved the thermal stability of Pd nanoparticles (NPs). X-ray photoelectron spectroscopy measurement showed that deposition of FeOx on the Pd NPs caused a positive shift of Pd3d binding energy. In the FA dehydrogenation reaction, the ultrathin FeOx layer on the Pd/C could considerably improve the catalytic activity, and Pd/C coated with 8 cycles of FeOx showed an optimized activity with turnover frequency being about 2 times higher than the uncoated one. shape as a function of the number of FeOx ALD The improved activities were in a volcanocycles, indicating the coverage of FeOx is critical for the optimized activity. In summary, simultaneous improvements of activity and thermal stability of Pd/C catalyst by ultra-thin FeOx overlayer suggest to be an effective way to design active catalysts for the FA dehydrogenation reaction.