On the conditions of low-resolution radar, a parametric model for two-dimensional radar target is described here according to the theory of electromagnetic scattering and the geometrical theory of diffraction. A high ...On the conditions of low-resolution radar, a parametric model for two-dimensional radar target is described here according to the theory of electromagnetic scattering and the geometrical theory of diffraction. A high resolution estimation algorithm to extract the model parameters is also developed by building the relation of the scattering model and Prony model. The analysis of Cramer-Rao bound and simulation show that the method here has better statistical performance. The simulated analysis also indicates that the accurate extraction of the diffraction coefficient of scattering center is restricted by signal to noise ratio, radar center frequency and radar bandwidth.展开更多
In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.Whe...In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.When using BBO algorithm to optimize threshold,firstly,the elitist selection operator is used to retain the optimal set of solutions.Secondly,a migration strategy based on fusion of good solution and pending solution is introduced to reduce premature convergence and invalid migration of traditional migration operations.Thirdly,to reduce the blindness of traditional mutation operations,a mutation operation through binary computation is created.Then,it is applied to the multi-threshold image segmentation of two-dimensional cross entropy.Finally,this method is used to segment the typical image and compared with two-dimensional multi-threshold segmentation based on particle swarm optimization algorithm and the two-dimensional multi-threshold image segmentation based on standard BBO algorithm.The experimental results show that the method has good convergence stability,it can effectively shorten the time of iteration,and the optimization performance is better than the standard BBO algorithm.展开更多
This paper presents the first application of the bees algorithm to the optimisation of parameters of a two-dimensional (2D) recursive digital filter. The algorithm employs a search technique inspired by the foraging...This paper presents the first application of the bees algorithm to the optimisation of parameters of a two-dimensional (2D) recursive digital filter. The algorithm employs a search technique inspired by the foraging behaviour of honey bees. The results obtained show clear improvement compared to those produced by the widely adopted genetic algorithm (GA).展开更多
A two-dimensional genetic algorithm of wavelet coefficient is presented by using the ENO wavelet transform and the decomposed characterization of the two-dimensional Haar wavelet. And simulated by the ENO interpolatio...A two-dimensional genetic algorithm of wavelet coefficient is presented by using the ENO wavelet transform and the decomposed characterization of the two-dimensional Haar wavelet. And simulated by the ENO interpolation the article shows the affectivity and the superiority of this algorithm.展开更多
Time-frequency-based methods are proven to be effective for parameter estimation of linear frequency modulation (LFM) signals. The smoothed pseudo Winger-Ville distribution (SPWVD) is used for the parameter estima...Time-frequency-based methods are proven to be effective for parameter estimation of linear frequency modulation (LFM) signals. The smoothed pseudo Winger-Ville distribution (SPWVD) is used for the parameter estimation of multi-LFM signals, and a method of the SPWVD binarization by a dynamic threshold based on the Otsu algorithm is proposed. The proposed method is effective in the demand for the estimation of different parameters and the unknown signal-to-noise ratio (SNR) circumstance. The performance of this method is confirmed by numerical simulation.展开更多
In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid betwee...In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid between the two techniques,comprising the water cycle and moth-flame optimization algorithms.The optimal thresholds are obtained by maximizing the between class variance(Otsu’s function)of the image.To test the performance of threshold searching process,the proposed algorithm has been evaluated on standard benchmark of ten axial T2-weighted brain MR images for image segmentation.The experimental outcomes infer that it produces better optimal threshold values at a greater and quicker convergence rate.In contrast to other state-of-the-art methods,namely Adaptive Wind Driven Optimization(AWDO),Adaptive Bacterial Foraging(ABF)and Particle Swarm Optimization(PSO),the proposed algorithm has been found to be better at producing the best objective function,Peak Signal-to-Noise Ratio(PSNR),Standard Deviation(STD)and lower computational time values.Further,it was observed thatthe segmented image gives greater detail when the threshold level increases.Moreover,the statistical test result confirms that the best and mean values are almost zero and the average difference between best and mean value 1.86 is obtained through the 30 executions of the proposed algorithm.Thus,these images will lead to better segments of gray,white and cerebrospinal fluid that enable better clinical choices and diagnoses using a proposed algorithm.展开更多
The vertical two-dimensional non-hydrostatic pressure models with multiple layers can make prediction more accurate than those obtained by the hydrostatic pres- sure assumption. However, they are time-consuming and un...The vertical two-dimensional non-hydrostatic pressure models with multiple layers can make prediction more accurate than those obtained by the hydrostatic pres- sure assumption. However, they are time-consuming and unstable, which makes them unsuitable for wider application. In this study, an efficient model with a single layer is developed. Decomposing the pressure into the hydrostatic and dynamic components and integrating the x-momentum equation from the bottom to the free surface can yield a horizontal momentum equation, in which the terms relevant to the dynamic pressure are discretized semi-implicitly. The convective terms in the vertical momentum equation are ignored, and the rest of the equation is approximated with the Keller-box scheme. The velocities expressed as the unknown dynamic pressure are substituted into the continuity equation, resulting in a tri-diagonal linear system solved by the Thomas algorithm. The validation of solitary and sinusoidal waves indicates that the present model can provide comparable results to the models with multiple layers but at much lower computation cost.展开更多
To further improve the boiler ash ratio detection methods and resource utilization, through image processing technology for boiler ash ratio analysis, the article first studied the one-dimensional Otsu algorithm, and ...To further improve the boiler ash ratio detection methods and resource utilization, through image processing technology for boiler ash ratio analysis, the article first studied the one-dimensional Otsu algorithm, and then for the one-dimensional Otsu algorithm, in order to improve the accuracy of the algorithm, then it puts forward a two-dimensional Otsu algorithm. Finally the two-dimensional Otsu algorithm combined with the one-dimensional Otsu algorithm and the improved Otsu algorithm. By analyzing the improved Otsu algorithm, this paper considers the pixel gray value, neighborhood information, excluding light, noise and the relative efficiency of one-dimensional Otsu algorithm higher accuracy. The relative dimensional Otsu algorithm operating efficiency has been greatly improved. Improved Otsu algorithm in dealing with boiler ash ratio detection has played a very good part in the ecological environment, economic development and some other important aspects.展开更多
碎米作为大米加工过程的常见产物,常会对产品的口感、味道产生影响,因此针对整米中碎米的有效筛分尤为重要。针对上述问题,该文建立基于大津法(maximal variance between clusters,OTSU)图像分割算法的逻辑回归模型用以检测整米中的碎...碎米作为大米加工过程的常见产物,常会对产品的口感、味道产生影响,因此针对整米中碎米的有效筛分尤为重要。针对上述问题,该文建立基于大津法(maximal variance between clusters,OTSU)图像分割算法的逻辑回归模型用以检测整米中的碎米。将检测结果与国标法进行对比,结果表明逻辑回归模型的曲线线下面积(area under the curve,AUC)值为0.987,柯尔莫可洛夫-斯米洛夫(Kolmogorov-Smirnov,KS)值为0.909,0.5为最佳阈值;而国标法的AUC值为0.922,KS值为0.669,21为最佳阈值。该文所建立的逻辑回归模型的准确率、精确率、召回率及F1分数均高于国标法。此外,逻辑回归模型的AUC值比国标法的AUC值更接近于1,KS值也更高,表明逻辑回归模型能够更好地区分碎米与整米。长轴(x_(1))、面积(x_(2))、短轴(x_(3))与长短轴比(x_(4))4个特征参数都是模型中具有显著影响的因素,对应的线性关系为z=-139.97-5.35x_(1)+10.93x_(2)+2.86x_(3)+34.59x_(4)。展开更多
文摘On the conditions of low-resolution radar, a parametric model for two-dimensional radar target is described here according to the theory of electromagnetic scattering and the geometrical theory of diffraction. A high resolution estimation algorithm to extract the model parameters is also developed by building the relation of the scattering model and Prony model. The analysis of Cramer-Rao bound and simulation show that the method here has better statistical performance. The simulated analysis also indicates that the accurate extraction of the diffraction coefficient of scattering center is restricted by signal to noise ratio, radar center frequency and radar bandwidth.
基金Science and Technology Plan of Gansu Province(No.144NKCA040)
文摘In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.When using BBO algorithm to optimize threshold,firstly,the elitist selection operator is used to retain the optimal set of solutions.Secondly,a migration strategy based on fusion of good solution and pending solution is introduced to reduce premature convergence and invalid migration of traditional migration operations.Thirdly,to reduce the blindness of traditional mutation operations,a mutation operation through binary computation is created.Then,it is applied to the multi-threshold image segmentation of two-dimensional cross entropy.Finally,this method is used to segment the typical image and compared with two-dimensional multi-threshold segmentation based on particle swarm optimization algorithm and the two-dimensional multi-threshold image segmentation based on standard BBO algorithm.The experimental results show that the method has good convergence stability,it can effectively shorten the time of iteration,and the optimization performance is better than the standard BBO algorithm.
基金supported by the ERDF (Objective One) project"Supporting Innovative Product Engineering and Responsive Manufacturing" (SUPERMAN)the EC-funded Network of Excellence"Innovative Production Machines and Systems" (I*PROMS)
文摘This paper presents the first application of the bees algorithm to the optimisation of parameters of a two-dimensional (2D) recursive digital filter. The algorithm employs a search technique inspired by the foraging behaviour of honey bees. The results obtained show clear improvement compared to those produced by the widely adopted genetic algorithm (GA).
基金the National Natural Science Committee and Chinese Engineering Physics Institute Foundation(10576013)the National Nature Science Foundation of Henan Province of China(0611053200)+1 种基金the Natural Science Foundation for the Education Department of Henan Province of China(2006110001)the Nature Science Foundation of Henan Institute of Science and Technology(2006055)
文摘A two-dimensional genetic algorithm of wavelet coefficient is presented by using the ENO wavelet transform and the decomposed characterization of the two-dimensional Haar wavelet. And simulated by the ENO interpolation the article shows the affectivity and the superiority of this algorithm.
基金supported by the National Natural Science Foundation of China (61302188)the Nanjing University of Science and Technology Research Foundation (2010ZDJH05)
文摘Time-frequency-based methods are proven to be effective for parameter estimation of linear frequency modulation (LFM) signals. The smoothed pseudo Winger-Ville distribution (SPWVD) is used for the parameter estimation of multi-LFM signals, and a method of the SPWVD binarization by a dynamic threshold based on the Otsu algorithm is proposed. The proposed method is effective in the demand for the estimation of different parameters and the unknown signal-to-noise ratio (SNR) circumstance. The performance of this method is confirmed by numerical simulation.
文摘In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid between the two techniques,comprising the water cycle and moth-flame optimization algorithms.The optimal thresholds are obtained by maximizing the between class variance(Otsu’s function)of the image.To test the performance of threshold searching process,the proposed algorithm has been evaluated on standard benchmark of ten axial T2-weighted brain MR images for image segmentation.The experimental outcomes infer that it produces better optimal threshold values at a greater and quicker convergence rate.In contrast to other state-of-the-art methods,namely Adaptive Wind Driven Optimization(AWDO),Adaptive Bacterial Foraging(ABF)and Particle Swarm Optimization(PSO),the proposed algorithm has been found to be better at producing the best objective function,Peak Signal-to-Noise Ratio(PSNR),Standard Deviation(STD)and lower computational time values.Further,it was observed thatthe segmented image gives greater detail when the threshold level increases.Moreover,the statistical test result confirms that the best and mean values are almost zero and the average difference between best and mean value 1.86 is obtained through the 30 executions of the proposed algorithm.Thus,these images will lead to better segments of gray,white and cerebrospinal fluid that enable better clinical choices and diagnoses using a proposed algorithm.
基金Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education(No. 20110142110064)the Ministry of Water Resources’ Science and Technology Promotion Plan Program (No. TG1316)
文摘The vertical two-dimensional non-hydrostatic pressure models with multiple layers can make prediction more accurate than those obtained by the hydrostatic pres- sure assumption. However, they are time-consuming and unstable, which makes them unsuitable for wider application. In this study, an efficient model with a single layer is developed. Decomposing the pressure into the hydrostatic and dynamic components and integrating the x-momentum equation from the bottom to the free surface can yield a horizontal momentum equation, in which the terms relevant to the dynamic pressure are discretized semi-implicitly. The convective terms in the vertical momentum equation are ignored, and the rest of the equation is approximated with the Keller-box scheme. The velocities expressed as the unknown dynamic pressure are substituted into the continuity equation, resulting in a tri-diagonal linear system solved by the Thomas algorithm. The validation of solitary and sinusoidal waves indicates that the present model can provide comparable results to the models with multiple layers but at much lower computation cost.
文摘To further improve the boiler ash ratio detection methods and resource utilization, through image processing technology for boiler ash ratio analysis, the article first studied the one-dimensional Otsu algorithm, and then for the one-dimensional Otsu algorithm, in order to improve the accuracy of the algorithm, then it puts forward a two-dimensional Otsu algorithm. Finally the two-dimensional Otsu algorithm combined with the one-dimensional Otsu algorithm and the improved Otsu algorithm. By analyzing the improved Otsu algorithm, this paper considers the pixel gray value, neighborhood information, excluding light, noise and the relative efficiency of one-dimensional Otsu algorithm higher accuracy. The relative dimensional Otsu algorithm operating efficiency has been greatly improved. Improved Otsu algorithm in dealing with boiler ash ratio detection has played a very good part in the ecological environment, economic development and some other important aspects.
文摘碎米作为大米加工过程的常见产物,常会对产品的口感、味道产生影响,因此针对整米中碎米的有效筛分尤为重要。针对上述问题,该文建立基于大津法(maximal variance between clusters,OTSU)图像分割算法的逻辑回归模型用以检测整米中的碎米。将检测结果与国标法进行对比,结果表明逻辑回归模型的曲线线下面积(area under the curve,AUC)值为0.987,柯尔莫可洛夫-斯米洛夫(Kolmogorov-Smirnov,KS)值为0.909,0.5为最佳阈值;而国标法的AUC值为0.922,KS值为0.669,21为最佳阈值。该文所建立的逻辑回归模型的准确率、精确率、召回率及F1分数均高于国标法。此外,逻辑回归模型的AUC值比国标法的AUC值更接近于1,KS值也更高,表明逻辑回归模型能够更好地区分碎米与整米。长轴(x_(1))、面积(x_(2))、短轴(x_(3))与长短轴比(x_(4))4个特征参数都是模型中具有显著影响的因素,对应的线性关系为z=-139.97-5.35x_(1)+10.93x_(2)+2.86x_(3)+34.59x_(4)。