This paper discusses the problem of direction of departure (DOD) and direction of arrival (DOA) estimation for a bistatic multiple input multiple output (MIMO) radar, and proposes an improved reduced-dimension C...This paper discusses the problem of direction of departure (DOD) and direction of arrival (DOA) estimation for a bistatic multiple input multiple output (MIMO) radar, and proposes an improved reduced-dimension Capon algorithm therein. Compared with the reduced-dimension Capon algorithm which requires pair matching between the two-dimensional angle estimation, the pro- posed algorithm can obtain automatically paired DOD and DOA estimation without debasing the performance of angle estimation in bistatic MIMO radar. Furthermore, the proposed algorithm has a lower complexity than the reduced-dimension Capon algorithm, and it is suitable for non-uniform linear arrays. The complexity of the proposed algorithm is analyzed and the Cramer-Rao bound (CRB) is also derived. Simulation results verify the usefulness of the proposed algorithm.展开更多
The Euler angle estimation is a calibration method for vector data measured by the magnetometer on a satellite.It is used to find the relative rotation between the coordinate system of the magnetometer and the satelli...The Euler angle estimation is a calibration method for vector data measured by the magnetometer on a satellite.It is used to find the relative rotation between the coordinate system of the magnetometer and the satellite(usually determined by Star Imagers).Before launch of the low-orbit,low-inclination Macao Science Satellite-1(known as MSS-1),we simulated the estimation of Euler angles by using the magnetic measurements of the in-orbit Swarm and China Seismo-Electromagnetic Satellite(noted as CSES),with various data combinations.In this study,11 data sets were designed to analyze the estimation results for the MSS-1 orbit by using a joint estimation method of the geomagnetic field model parameters and Euler angles.For the model results,we found that all the spatial power spectral lines showed behavior consistent with that of the CHAOS-7.8 model at low degrees(corresponding to large-scale magnetic signals).The spectra of models without global data coverage deviated much more(by a maximum of~10^(4) nT^(2))from those of the CHAOS-7.8 model at higher degrees.For models with global data coverage and with various data combinations,the spectral lines were distributed similarly.Moreover,the models with accordant power spectral distributions demonstrated different Euler angle estimations.As more vector data at higher latitudes were included,the estimated Euler angles varied monotonically in all three directions.The models with vector data in the same latitude range showed similar Euler angle results,regardless of whether the poleward scalar data were included.The largest value difference was found between the models using vector data within±40°latitudes and those using vector data within±60°latitudes,which reached to~28″.Therefore,we concluded that the inversion of the spherical harmonic Gauss coefficients in our tests was mainly affected by the spatial coverage range of the data,whereas the estimation of Euler angles largely depended on the latitude range where the vector data could be obtained.These results can be used for future in-flight data testing.We expect the estimation of Euler angles to improve as other methods are adopted.展开更多
Twist-angle two-dimensional systems,such as twisted bilayer graphene,twisted bilayer transition metal dichalcogenides,twisted bilayer phosphorene and their multilayer van der Waals heterostructures,exhibit novel and t...Twist-angle two-dimensional systems,such as twisted bilayer graphene,twisted bilayer transition metal dichalcogenides,twisted bilayer phosphorene and their multilayer van der Waals heterostructures,exhibit novel and tunable properties due to the formation of Moirésuperlattice and modulated Moirébands.The review presents a brief venation on the development of"twistronics"and subsequent applications based on band engineering by twisting.Theoretical predictions followed by experimental realization of magic-angle bilayer graphene ignited the flame of investigation on the new freedom degree,twistangle,to adjust(opto)electrical behaviors.Then,the merging of Dirac cones and the presence of flat bands gave rise to enhanced light-matter interaction and gate-dependent electrical phases,respectively,leading to applications in photodetectors and superconductor electronic devices.At the same time,the increasing amount of theoretical simulation on extended twisted 2D materials like TMDs and BPs called for further experimental verification.Finally,recently discovered properties in twisted bilayer h-BN evidenced h-BN could be an ideal candidate for dielectric and ferroelectric devices.Hence,both the predictions and confirmed properties imply twist-angle two-dimensional superlattice is a group of promising candidates for next-generation(opto)electronics.展开更多
The whole angle mode gyroscope(WAMG)is considered to be the next generation architecture,but it is suffered from the asymmetry errors to conduct real products.This paper proposes a novel high frequency injection based...The whole angle mode gyroscope(WAMG)is considered to be the next generation architecture,but it is suffered from the asymmetry errors to conduct real products.This paper proposes a novel high frequency injection based approach for the error parameters online identification for the WAMG.The significance is that it can separate physical and error fingerprints to enable online calibration.The nonlinear WAMG dynamics are discretized to meet the requirement of numerical precision and computation efficiency.The optimized estimation methods are then constructed and compared to track asymmetry error parameters continuously.In the validation part,its results firstly prove that the proposed scheme can accurately identify constant asymmetry parameters with an overall tracking error of less than 1 ppm and the extreme numerical convergence can reach 10^(-12)ppm.Under the dynamic asymmetry variation condition,the root mean square errors(RMSE)indicate that the tracking accuracy can reach the level of10^(-3),which shows the robustness of the proposed scheme.In summary,the proposed method can effectively estimate the WAMG asymmetry errors online with satisfied performance and practical values.展开更多
In the signal processing for metrewave radar, the reflection paths of target echoes can cause severe error in the elevation estimation for the low-angle target tracking. The exact angles of the reflection paths are un...In the signal processing for metrewave radar, the reflection paths of target echoes can cause severe error in the elevation estimation for the low-angle target tracking. The exact angles of the reflection paths are unknown beforehand, and therefore, the reflection paths can not be suppressed easily. Therefore, in this article, an improved reflection paths suppression approach is presented. A block matrix aggregate is constructed based on the possible angles of the reflection paths. Combined with the beamforming-like processing, a generalized maximum likelihood estimation is derived to optimize the estimation. Moreover, the noise reduction method based on the Toeplitz covariance matrix is used for better performance. This approach is applied to the real data collected by the low-angle tracking radar with 8-channel vertical array. The experiment results show that the reflection effects are reduced and the accuracy of the elevation estimate is improved.展开更多
This paper addresses the probability of atmospheric refractivity estimation by using field measurements at an array of radio receivers in terms of angle-of-arrival spectrum. Angle-of-arrival spectrum information is si...This paper addresses the probability of atmospheric refractivity estimation by using field measurements at an array of radio receivers in terms of angle-of-arrival spectrum. Angle-of-arrival spectrum information is simulated by the ray optics model and refractivity is expressed in the presence of an ideal tri-linear profile. The estimation of the refractivity is organized as an optimization problem and a genetic Mgorithm is used to search for the optimal solution from various trial refractivity profiles. Theoretical analysis demonstrates the feasibility of this method to retrieve the refractivity parameters. Simulation results indicate that this approach has a fair anti-noise ability and its accuracy performance is mainly dependent on the antenna aperture size and its positions.展开更多
In order to realize the elevation angle estimation for low-altitude targets at a low computational cost, a generalized multiple signal classification (GMUSIC) algorithm based on unitary transform is proposed, i.e., ...In order to realize the elevation angle estimation for low-altitude targets at a low computational cost, a generalized multiple signal classification (GMUSIC) algorithm based on unitary transform is proposed, i.e., the DU-GMUSlC algorithm. Firstly, the covariance matrix of received data is used to construct the Centro- Hermitian matrix. Then, the real-domain GMUSIC algorithm is used to implement the initial angle estimation, and the multipath attenuation coefficient is calculated in succession. Finally, the attenuation coefficient is taken into account in the GMUSIC method to carry out the secondary angle estimation which is beneficial to further improvement of the angle estimation accuracy. This method can meet requirements of low-angle accuracy as well as lower computational burden. Simulation results prove the correctness and effectiveness of the proposed algorithm. Moreover, field experiment data are used to further validate the effectiveness of this method.展开更多
This paper presents a dual-band planar antenna array for ISM band applications (2.4 GHz and 2.45 GHz). This antenna is proposed for indoor applications and enables adaptive beamforming and angle of arrival (AOA) estim...This paper presents a dual-band planar antenna array for ISM band applications (2.4 GHz and 2.45 GHz). This antenna is proposed for indoor applications and enables adaptive beamforming and angle of arrival (AOA) estimation. An adaptive beamforming algorithm is applied for a planar antenna array, which is able to steer its main beam and nulls in azimuth and elevation planes over a wide frequency band. Planar antenna array operates as a spatial filter in 3D space, processing the received signals with weighting schemes. A planar antenna array is designed for AOA estimation in azimuth and elevation planes by using MUltiple SIgnal Classification (MUSIC) based on subspace algorithm. The Base Station (BS) equipped with this planar antenna is preferred to be at the center position on the room ceiling to cover all sectors of the room. It is designed to use four directional triangular elements arranged to form a square planar antenna array. Planar antenna with four elliptical slotted triangular elements (PAFESTE) is used to obtain optimal directivity in four directions in azimuth plane with specific orientation of 30? in elevation plane. It is characterized by half power beamwidth in elevation plane of about 60? and half power beamwidth in azimuth plane of about 90?.展开更多
The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction ...The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction fuse actuator.The impact point easily deviates from the target,and thus the correction result cannot be readily evaluated.However,the cost of shooting tests is considerably high to conduct many tests for data collection.To address this issue,this study proposes an aiming method for shooting tests based on small sample size.The proposed method uses the Bootstrap method to expand the test data;repeatedly iterates and corrects the position of the simulated theoretical impact points through an improved compatibility test method;and dynamically adjusts the weight of the prior distribution of simulation results based on Kullback-Leibler divergence,which to some extent avoids the real data being"submerged"by the simulation data and achieves the fusion Bayesian estimation of the dispersion center.The experimental results show that when the simulation accuracy is sufficiently high,the proposed method yields a smaller mean-square deviation in estimating the dispersion center and higher shooting accuracy than those of the three comparison methods,which is more conducive to reflecting the effect of the control algorithm and facilitating test personnel to iterate their proposed structures and algorithms.;in addition,this study provides a knowledge base for further comprehensive studies in the future.展开更多
The wide-swath method based on multi-receiver is a novel and highly accurate wide-swath method, which requires a very precise view angle. The estimated angle has error because of the atmosphere refraction, angle error...The wide-swath method based on multi-receiver is a novel and highly accurate wide-swath method, which requires a very precise view angle. The estimated angle has error because of the atmosphere refraction, angle error of view and target height. A method is proposed in this paper to estimate the angle error from the return signal. The method makes use of the relationship between the view angle error and the signal correlation of the subswaths to estimate the angle error. The precision of this method is analyzed by the law of great number and it turns out to be in direct proportion to the root square number of averaging. The simulation result is given and the angle precision is 0.025°.展开更多
Machine learning methods, one type of methods used in artificial intelligence, are now widely used to analyze two-dimensional (2D) images in various fields. In these analyses, estimating the boundary between two regio...Machine learning methods, one type of methods used in artificial intelligence, are now widely used to analyze two-dimensional (2D) images in various fields. In these analyses, estimating the boundary between two regions is basic but important. If the model contains stochastic factors such as random observation errors, determining the boundary is not easy. When the probability distributions are mis-specified, ordinal methods such as probit and logit maximum likelihood estimators (MLE) have large biases. The grouping estimator is a semiparametric estimator based on the grouping of data that does not require specific probability distributions. For 2D images, the grouping is simple. Monte Carlo experiments show that the grouping estimator clearly improves the probit MLE in many cases. The grouping estimator essentially makes the resolution density lower, and the present findings imply that methods using low-resolution image analyses might not be the proper ones in high-density image analyses. It is necessary to combine and compare the results of high- and low-resolution image analyses. The grouping estimator may provide theoretical justifications for such analysis.展开更多
A vision-based color analysis system was developed for rapid estimation of copper content in the secondary copper smelting process. Firstly, cross section images of secondary copper samples were captured by the design...A vision-based color analysis system was developed for rapid estimation of copper content in the secondary copper smelting process. Firstly, cross section images of secondary copper samples were captured by the designed vision system. After the preprocessing and segmenting procedures, the images were selected according to their grayscale standard deviations of pixels and percentages of edge pixels in the luminance component. The selected images were then used to extract the information of the improved color vector angles, from which the copper content estimation model was developed based on the least squares support vector regression (LSSVR) method. For comparison, three additional LSSVR models, namely, only with sample selection, only with improved color vector angle, without sample selection or improved color vector angle, were developed. In addition, two exponential models, namely, with sample selection, without sample selection, were developed. Experimental results indicate that the proposed method is more effective for improving the copper content estimation accuracy, particularly when the sample size is small.展开更多
Next-generation vehicle control and future autonomous driving require further advances in vehicle dynamic state estimation. This article provides a concise review, along with the perspectives, of the recent developmen...Next-generation vehicle control and future autonomous driving require further advances in vehicle dynamic state estimation. This article provides a concise review, along with the perspectives, of the recent developments in the estimation of vehicle dynamic states. The definitions used in vehicle dynamic state estimation are first introduced, and alternative estimation structures are presented. Then, the sensor configuration schemes used to estimate vehicle velocity, sideslip angle, yaw rate and roll angle are presented. The vehicle models used for vehicle dynamic state estimation are further summarized, and representative estimation approaches are discussed. Future concerns and perspectives for vehicle dynamic state estimation are also discussed.展开更多
Water quality models are important tools to support the optimization of aquatic ecosystem rehabilitation programs and assess their efficiency. Basing on the flow conditions of the Daqinghe River Mouth of the Dianchi L...Water quality models are important tools to support the optimization of aquatic ecosystem rehabilitation programs and assess their efficiency. Basing on the flow conditions of the Daqinghe River Mouth of the Dianchi Lake, China, a two-dimensional water quality model was developed in the research. The hydrodynamics module was numerically solved by the alternating direction iteration (ADI) method. The parameters of the water quality module were obtained through the in situ experiments and the laboratory analyses that were conducted from 2006 to 2007. The model was calibrated and verified by the observation data in 2007. Among the four modelled key variables, i.e., water level, COD (in CODcr), NH4+-N and PO43-P the minimum value of the coefficient of determination (COD) was 0.69, indicating the model performed reasonably well. The developed model was then applied to simulate the water quality changes at a downstream cross-section assuming that the designed restoration programs were implemented. According to the simulated results, the restoration programs could cut down the loads of COD and PO43-P about 15%. Such a load reduction, unfortunately, would have very little effect on the NH4^+-N removal. Moreover, the water quality at the outlet cross-section would be still in class V (3838-02), indicating more measures should be taken to further reduce the loads. The study demonstrated the capability of water quality models to support aquatic ecosystem restorations.展开更多
This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method f...This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method for joint estimation of Doppler fre- quency, two-dimensional (2D) direction of departure and 2D direc- tion of arrival based on the propagator method (PM) for arbitrary arrays is discussed. A special matrix is constructed to eliminate the influence of spatial colored noise. The four-dimensional (4D) angle and Doppler frequency are extracted from the matrix and the three- dimensional (3D) coordinates of the targets are then calculated on the basis of these angles. The proposed algorithm provides a lower computational complexity and has a parameter estimation very close to that of the ESPRIT algorithm and the DOA-matrix al- gorithm in the high signal to noise ratio and the Cramer-Rao bound (CRB) is given. Furthermore, multi-dimensional parameters can be automatically paired by this algorithm to avoid performance degra- dation resulting from wrong pairing. Simulation results demonstrate the effectiveness of the proposed method.展开更多
The signal to noise ratio (SNR) of seismic waves is usually very low after long distance transmission. For this condition, to improve the bearing estimation capability in the low SNR, a frequency domain polarization...The signal to noise ratio (SNR) of seismic waves is usually very low after long distance transmission. For this condition, to improve the bearing estimation capability in the low SNR, a frequency domain polarization weighted ESPRIT method using a single vector device is proposed. The frequency domain polari- zation parameters extracted from the signals are used to design the weighted function which is applied to the received signals. The bearing angle and the target frequency are estimated through ESPRIT using the weighted signals. The simulation and experiment results show that the presented method can obtain accurate estimation values under the low SNR with little prior information.展开更多
Recent studies in van der Waals coupled two-dimensional(2D) bilayer materials have demonstrated a new freedom for material engineering by the formation of moiré pattern. By tuning the twist angle between two laye...Recent studies in van der Waals coupled two-dimensional(2D) bilayer materials have demonstrated a new freedom for material engineering by the formation of moiré pattern. By tuning the twist angle between two layers, one can modulate their electronic band structures and therefore the associated electrical transport and optical properties, which are distinct from the original ones of each individual layer. These new properties excite great passion in the exploration of new quantum states and possible applications of 2D bilayers. In this article, we will mainly review the prevailing fabrication methods and emerging physical properties of twisted bilayer materials and lastly give out a perspective of this topic.展开更多
A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two...A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two-dimensional vector reconstruction (TSR) method. The key idea is to apply the D3 approach which can extract the signal of given frequency but null out other frequency signals in temporal domain. Then the spatial vector reconstruction processing is used to estimate the angle of the spatial coherent signal source based on extract signal data. Compared with the common temporal and spatial processing approach, the TSR method has a lower computational load, higher real-time performance, robustness and angular accuracy of DOA. The proposed algorithm can be directly applied to the phased array radar of coherent pulses. Simulation results demonstrate the performance of the proposed technique.展开更多
The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-...The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-MUSIC) algorithm is proposed.Conventional MUSIC algorithm for joint DOA and Doppler frequency estimation requires a large computational cost due to the two dimensional (2D) spectral peak searching.Aiming at this shortcoming,the proposed CE-MUSIC algorithm firstly uses a reduced-dimension transformation to reduce the subspace dimension and then obtains the estimates of DOA and Doppler frequency with only one-dimensional (1D) search.The proposed CE-MUSIC algorithm has much lower computational complexity and very close estimation performance when compared to conventional 2D-MUSIC algorithm.Furthermore,it outperforms estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm.Meanwhile,the mean squared error (MSE) and Cramer-Rao bound (CRB) of joint DOA and Doppler frequency estimation are derived.Detailed simulation results illustrate the validity and improvement of the proposed algorithm.展开更多
Mobile location using angle of arrival (AOA) measurements has received considerable attention. This paper presents an approximation of maximum likelihood estimator (MLE) for localizing a source based on AOA measur...Mobile location using angle of arrival (AOA) measurements has received considerable attention. This paper presents an approximation of maximum likelihood estimator (MLE) for localizing a source based on AOA measurements. By introducing an intermediate variable, the nonlinear equations relating AOA estimates can be transformed into a set of equations which are linear in the unknown parameters. It is an approximate realization of the MLE. Simulations show that the proposed algorithm outperforms the previous contribution.展开更多
基金supported by the National Natural Science Foundation of China(6080105261271327)+2 种基金Jiangsu Planned Projects for Postdoctoral Research Funds(1201039C)the China Postdoctoral Science Foundation (2012M521099)Hubei Key Laboratory of Intelligent Wireless Communications(IWC2012002)
文摘This paper discusses the problem of direction of departure (DOD) and direction of arrival (DOA) estimation for a bistatic multiple input multiple output (MIMO) radar, and proposes an improved reduced-dimension Capon algorithm therein. Compared with the reduced-dimension Capon algorithm which requires pair matching between the two-dimensional angle estimation, the pro- posed algorithm can obtain automatically paired DOD and DOA estimation without debasing the performance of angle estimation in bistatic MIMO radar. Furthermore, the proposed algorithm has a lower complexity than the reduced-dimension Capon algorithm, and it is suitable for non-uniform linear arrays. The complexity of the proposed algorithm is analyzed and the Cramer-Rao bound (CRB) is also derived. Simulation results verify the usefulness of the proposed algorithm.
基金funded by the Macao Foundation,the pre-research project of Civil Aerospace Technologies(Nos.D020308 and D020303)funded by the China National Space Administration,Macao Science and Technology Development Fund(FDCT+1 种基金No.0001/2019/A1)the opening fund of the State Key Laboratory of Lunar and Planetary Sciences(Macao University of Science and Technology,Macao FDCT No.119/2017/A3)。
文摘The Euler angle estimation is a calibration method for vector data measured by the magnetometer on a satellite.It is used to find the relative rotation between the coordinate system of the magnetometer and the satellite(usually determined by Star Imagers).Before launch of the low-orbit,low-inclination Macao Science Satellite-1(known as MSS-1),we simulated the estimation of Euler angles by using the magnetic measurements of the in-orbit Swarm and China Seismo-Electromagnetic Satellite(noted as CSES),with various data combinations.In this study,11 data sets were designed to analyze the estimation results for the MSS-1 orbit by using a joint estimation method of the geomagnetic field model parameters and Euler angles.For the model results,we found that all the spatial power spectral lines showed behavior consistent with that of the CHAOS-7.8 model at low degrees(corresponding to large-scale magnetic signals).The spectra of models without global data coverage deviated much more(by a maximum of~10^(4) nT^(2))from those of the CHAOS-7.8 model at higher degrees.For models with global data coverage and with various data combinations,the spectral lines were distributed similarly.Moreover,the models with accordant power spectral distributions demonstrated different Euler angle estimations.As more vector data at higher latitudes were included,the estimated Euler angles varied monotonically in all three directions.The models with vector data in the same latitude range showed similar Euler angle results,regardless of whether the poleward scalar data were included.The largest value difference was found between the models using vector data within±40°latitudes and those using vector data within±60°latitudes,which reached to~28″.Therefore,we concluded that the inversion of the spherical harmonic Gauss coefficients in our tests was mainly affected by the spatial coverage range of the data,whereas the estimation of Euler angles largely depended on the latitude range where the vector data could be obtained.These results can be used for future in-flight data testing.We expect the estimation of Euler angles to improve as other methods are adopted.
基金financially supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB43000000)the CAS-JSPS Cooperative Research Project(No.GJHZ2021131)。
文摘Twist-angle two-dimensional systems,such as twisted bilayer graphene,twisted bilayer transition metal dichalcogenides,twisted bilayer phosphorene and their multilayer van der Waals heterostructures,exhibit novel and tunable properties due to the formation of Moirésuperlattice and modulated Moirébands.The review presents a brief venation on the development of"twistronics"and subsequent applications based on band engineering by twisting.Theoretical predictions followed by experimental realization of magic-angle bilayer graphene ignited the flame of investigation on the new freedom degree,twistangle,to adjust(opto)electrical behaviors.Then,the merging of Dirac cones and the presence of flat bands gave rise to enhanced light-matter interaction and gate-dependent electrical phases,respectively,leading to applications in photodetectors and superconductor electronic devices.At the same time,the increasing amount of theoretical simulation on extended twisted 2D materials like TMDs and BPs called for further experimental verification.Finally,recently discovered properties in twisted bilayer h-BN evidenced h-BN could be an ideal candidate for dielectric and ferroelectric devices.Hence,both the predictions and confirmed properties imply twist-angle two-dimensional superlattice is a group of promising candidates for next-generation(opto)electronics.
基金funded by the National Natural Science Foundation under grant No.62171420Natural Science Foundation of Shandong Province under grant No.ZR201910230031。
文摘The whole angle mode gyroscope(WAMG)is considered to be the next generation architecture,but it is suffered from the asymmetry errors to conduct real products.This paper proposes a novel high frequency injection based approach for the error parameters online identification for the WAMG.The significance is that it can separate physical and error fingerprints to enable online calibration.The nonlinear WAMG dynamics are discretized to meet the requirement of numerical precision and computation efficiency.The optimized estimation methods are then constructed and compared to track asymmetry error parameters continuously.In the validation part,its results firstly prove that the proposed scheme can accurately identify constant asymmetry parameters with an overall tracking error of less than 1 ppm and the extreme numerical convergence can reach 10^(-12)ppm.Under the dynamic asymmetry variation condition,the root mean square errors(RMSE)indicate that the tracking accuracy can reach the level of10^(-3),which shows the robustness of the proposed scheme.In summary,the proposed method can effectively estimate the WAMG asymmetry errors online with satisfied performance and practical values.
文摘In the signal processing for metrewave radar, the reflection paths of target echoes can cause severe error in the elevation estimation for the low-angle target tracking. The exact angles of the reflection paths are unknown beforehand, and therefore, the reflection paths can not be suppressed easily. Therefore, in this article, an improved reflection paths suppression approach is presented. A block matrix aggregate is constructed based on the possible angles of the reflection paths. Combined with the beamforming-like processing, a generalized maximum likelihood estimation is derived to optimize the estimation. Moreover, the noise reduction method based on the Toeplitz covariance matrix is used for better performance. This approach is applied to the real data collected by the low-angle tracking radar with 8-channel vertical array. The experiment results show that the reflection effects are reduced and the accuracy of the elevation estimate is improved.
基金supported by the National Natural Science Foundation of China (Grant No. 40775023)
文摘This paper addresses the probability of atmospheric refractivity estimation by using field measurements at an array of radio receivers in terms of angle-of-arrival spectrum. Angle-of-arrival spectrum information is simulated by the ray optics model and refractivity is expressed in the presence of an ideal tri-linear profile. The estimation of the refractivity is organized as an optimization problem and a genetic Mgorithm is used to search for the optimal solution from various trial refractivity profiles. Theoretical analysis demonstrates the feasibility of this method to retrieve the refractivity parameters. Simulation results indicate that this approach has a fair anti-noise ability and its accuracy performance is mainly dependent on the antenna aperture size and its positions.
基金supported by the National Natural Science Foundation of China(61101224)the Research on the Altitude Measurement Method for VHF Radar under the Complicated Environment
文摘In order to realize the elevation angle estimation for low-altitude targets at a low computational cost, a generalized multiple signal classification (GMUSIC) algorithm based on unitary transform is proposed, i.e., the DU-GMUSlC algorithm. Firstly, the covariance matrix of received data is used to construct the Centro- Hermitian matrix. Then, the real-domain GMUSIC algorithm is used to implement the initial angle estimation, and the multipath attenuation coefficient is calculated in succession. Finally, the attenuation coefficient is taken into account in the GMUSIC method to carry out the secondary angle estimation which is beneficial to further improvement of the angle estimation accuracy. This method can meet requirements of low-angle accuracy as well as lower computational burden. Simulation results prove the correctness and effectiveness of the proposed algorithm. Moreover, field experiment data are used to further validate the effectiveness of this method.
文摘This paper presents a dual-band planar antenna array for ISM band applications (2.4 GHz and 2.45 GHz). This antenna is proposed for indoor applications and enables adaptive beamforming and angle of arrival (AOA) estimation. An adaptive beamforming algorithm is applied for a planar antenna array, which is able to steer its main beam and nulls in azimuth and elevation planes over a wide frequency band. Planar antenna array operates as a spatial filter in 3D space, processing the received signals with weighting schemes. A planar antenna array is designed for AOA estimation in azimuth and elevation planes by using MUltiple SIgnal Classification (MUSIC) based on subspace algorithm. The Base Station (BS) equipped with this planar antenna is preferred to be at the center position on the room ceiling to cover all sectors of the room. It is designed to use four directional triangular elements arranged to form a square planar antenna array. Planar antenna with four elliptical slotted triangular elements (PAFESTE) is used to obtain optimal directivity in four directions in azimuth plane with specific orientation of 30? in elevation plane. It is characterized by half power beamwidth in elevation plane of about 60? and half power beamwidth in azimuth plane of about 90?.
基金the National Natural Science Foundation of China(Grant No.61973033)Preliminary Research of Equipment(Grant No.9090102010305)for funding the experiments。
文摘The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction fuse actuator.The impact point easily deviates from the target,and thus the correction result cannot be readily evaluated.However,the cost of shooting tests is considerably high to conduct many tests for data collection.To address this issue,this study proposes an aiming method for shooting tests based on small sample size.The proposed method uses the Bootstrap method to expand the test data;repeatedly iterates and corrects the position of the simulated theoretical impact points through an improved compatibility test method;and dynamically adjusts the weight of the prior distribution of simulation results based on Kullback-Leibler divergence,which to some extent avoids the real data being"submerged"by the simulation data and achieves the fusion Bayesian estimation of the dispersion center.The experimental results show that when the simulation accuracy is sufficiently high,the proposed method yields a smaller mean-square deviation in estimating the dispersion center and higher shooting accuracy than those of the three comparison methods,which is more conducive to reflecting the effect of the control algorithm and facilitating test personnel to iterate their proposed structures and algorithms.;in addition,this study provides a knowledge base for further comprehensive studies in the future.
文摘The wide-swath method based on multi-receiver is a novel and highly accurate wide-swath method, which requires a very precise view angle. The estimated angle has error because of the atmosphere refraction, angle error of view and target height. A method is proposed in this paper to estimate the angle error from the return signal. The method makes use of the relationship between the view angle error and the signal correlation of the subswaths to estimate the angle error. The precision of this method is analyzed by the law of great number and it turns out to be in direct proportion to the root square number of averaging. The simulation result is given and the angle precision is 0.025°.
文摘Machine learning methods, one type of methods used in artificial intelligence, are now widely used to analyze two-dimensional (2D) images in various fields. In these analyses, estimating the boundary between two regions is basic but important. If the model contains stochastic factors such as random observation errors, determining the boundary is not easy. When the probability distributions are mis-specified, ordinal methods such as probit and logit maximum likelihood estimators (MLE) have large biases. The grouping estimator is a semiparametric estimator based on the grouping of data that does not require specific probability distributions. For 2D images, the grouping is simple. Monte Carlo experiments show that the grouping estimator clearly improves the probit MLE in many cases. The grouping estimator essentially makes the resolution density lower, and the present findings imply that methods using low-resolution image analyses might not be the proper ones in high-density image analyses. It is necessary to combine and compare the results of high- and low-resolution image analyses. The grouping estimator may provide theoretical justifications for such analysis.
基金Project(2011BAE23B05)supported by National Key Technology R&D Program of ChinaProject(61004134)supported by the National Natural Science Foundation of ChinaProject(LQ13F030007)supported by Zhejiang Provincial Natural Science Foundation of China
文摘A vision-based color analysis system was developed for rapid estimation of copper content in the secondary copper smelting process. Firstly, cross section images of secondary copper samples were captured by the designed vision system. After the preprocessing and segmenting procedures, the images were selected according to their grayscale standard deviations of pixels and percentages of edge pixels in the luminance component. The selected images were then used to extract the information of the improved color vector angles, from which the copper content estimation model was developed based on the least squares support vector regression (LSSVR) method. For comparison, three additional LSSVR models, namely, only with sample selection, only with improved color vector angle, without sample selection or improved color vector angle, were developed. In addition, two exponential models, namely, with sample selection, without sample selection, were developed. Experimental results indicate that the proposed method is more effective for improving the copper content estimation accuracy, particularly when the sample size is small.
基金supported by the National Natural Science Foundation of China(61403158,61520106008)the Project of the Education Department of Jilin Province(2016-429)
文摘Next-generation vehicle control and future autonomous driving require further advances in vehicle dynamic state estimation. This article provides a concise review, along with the perspectives, of the recent developments in the estimation of vehicle dynamic states. The definitions used in vehicle dynamic state estimation are first introduced, and alternative estimation structures are presented. Then, the sensor configuration schemes used to estimate vehicle velocity, sideslip angle, yaw rate and roll angle are presented. The vehicle models used for vehicle dynamic state estimation are further summarized, and representative estimation approaches are discussed. Future concerns and perspectives for vehicle dynamic state estimation are also discussed.
基金supported by the National Hi-Tech Research and Development Program (863) of China (No.2007AA06A405, 2005AA6010100401)
文摘Water quality models are important tools to support the optimization of aquatic ecosystem rehabilitation programs and assess their efficiency. Basing on the flow conditions of the Daqinghe River Mouth of the Dianchi Lake, China, a two-dimensional water quality model was developed in the research. The hydrodynamics module was numerically solved by the alternating direction iteration (ADI) method. The parameters of the water quality module were obtained through the in situ experiments and the laboratory analyses that were conducted from 2006 to 2007. The model was calibrated and verified by the observation data in 2007. Among the four modelled key variables, i.e., water level, COD (in CODcr), NH4+-N and PO43-P the minimum value of the coefficient of determination (COD) was 0.69, indicating the model performed reasonably well. The developed model was then applied to simulate the water quality changes at a downstream cross-section assuming that the designed restoration programs were implemented. According to the simulated results, the restoration programs could cut down the loads of COD and PO43-P about 15%. Such a load reduction, unfortunately, would have very little effect on the NH4^+-N removal. Moreover, the water quality at the outlet cross-section would be still in class V (3838-02), indicating more measures should be taken to further reduce the loads. The study demonstrated the capability of water quality models to support aquatic ecosystem restorations.
基金supported by the National Natural Science Foundation of China(6137116961179006)+1 种基金the Jiangsu Postdoctoral Research Funding Plan(1301013B)the Nanjing University of Aeronautics and Astronautics Funding(NZ2013208)
文摘This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method for joint estimation of Doppler fre- quency, two-dimensional (2D) direction of departure and 2D direc- tion of arrival based on the propagator method (PM) for arbitrary arrays is discussed. A special matrix is constructed to eliminate the influence of spatial colored noise. The four-dimensional (4D) angle and Doppler frequency are extracted from the matrix and the three- dimensional (3D) coordinates of the targets are then calculated on the basis of these angles. The proposed algorithm provides a lower computational complexity and has a parameter estimation very close to that of the ESPRIT algorithm and the DOA-matrix al- gorithm in the high signal to noise ratio and the Cramer-Rao bound (CRB) is given. Furthermore, multi-dimensional parameters can be automatically paired by this algorithm to avoid performance degra- dation resulting from wrong pairing. Simulation results demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(11234002)
文摘The signal to noise ratio (SNR) of seismic waves is usually very low after long distance transmission. For this condition, to improve the bearing estimation capability in the low SNR, a frequency domain polarization weighted ESPRIT method using a single vector device is proposed. The frequency domain polari- zation parameters extracted from the signals are used to design the weighted function which is applied to the received signals. The bearing angle and the target frequency are estimated through ESPRIT using the weighted signals. The simulation and experiment results show that the presented method can obtain accurate estimation values under the low SNR with little prior information.
基金Project supported by the National Key R&D Program of China(Grant Nos.2016YFA0300903 and 2016YFA0300804)National Equipment Program of China(Grant No.ZDYZ2015-1)+3 种基金Beijing Graphene Innovation Program,China(Grant No.Z181100004818003)Beijing Municipal Science&Technology Commission,China(Grant No.Z181100004218006)Bureau of Industry and Information Technology of Shenzhen,China(Graphene platform contract No.201901161512)the Key R&D Program of Guangdong Province,China(Grant No.2019B010931001)
文摘Recent studies in van der Waals coupled two-dimensional(2D) bilayer materials have demonstrated a new freedom for material engineering by the formation of moiré pattern. By tuning the twist angle between two layers, one can modulate their electronic band structures and therefore the associated electrical transport and optical properties, which are distinct from the original ones of each individual layer. These new properties excite great passion in the exploration of new quantum states and possible applications of 2D bilayers. In this article, we will mainly review the prevailing fabrication methods and emerging physical properties of twisted bilayer materials and lastly give out a perspective of this topic.
文摘A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two-dimensional vector reconstruction (TSR) method. The key idea is to apply the D3 approach which can extract the signal of given frequency but null out other frequency signals in temporal domain. Then the spatial vector reconstruction processing is used to estimate the angle of the spatial coherent signal source based on extract signal data. Compared with the common temporal and spatial processing approach, the TSR method has a lower computational load, higher real-time performance, robustness and angular accuracy of DOA. The proposed algorithm can be directly applied to the phased array radar of coherent pulses. Simulation results demonstrate the performance of the proposed technique.
基金supported in part by the Funding for Outstanding Doctoral Dissertation in NUAA (No.BCXJ1503)the Funding of Jiangsu Innovation Program for Graduate Education(No.KYLX15_0281)the Fundamental Research Funds for the Central Universities
文摘The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-MUSIC) algorithm is proposed.Conventional MUSIC algorithm for joint DOA and Doppler frequency estimation requires a large computational cost due to the two dimensional (2D) spectral peak searching.Aiming at this shortcoming,the proposed CE-MUSIC algorithm firstly uses a reduced-dimension transformation to reduce the subspace dimension and then obtains the estimates of DOA and Doppler frequency with only one-dimensional (1D) search.The proposed CE-MUSIC algorithm has much lower computational complexity and very close estimation performance when compared to conventional 2D-MUSIC algorithm.Furthermore,it outperforms estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm.Meanwhile,the mean squared error (MSE) and Cramer-Rao bound (CRB) of joint DOA and Doppler frequency estimation are derived.Detailed simulation results illustrate the validity and improvement of the proposed algorithm.
文摘Mobile location using angle of arrival (AOA) measurements has received considerable attention. This paper presents an approximation of maximum likelihood estimator (MLE) for localizing a source based on AOA measurements. By introducing an intermediate variable, the nonlinear equations relating AOA estimates can be transformed into a set of equations which are linear in the unknown parameters. It is an approximate realization of the MLE. Simulations show that the proposed algorithm outperforms the previous contribution.