In order to study the basic characteristics of gas flow field in the atomizing chamber near the nozzle outlet of the vortical loop slit atomizer and its influence mechanism on clogging phenomenon,the computational flu...In order to study the basic characteristics of gas flow field in the atomizing chamber near the nozzle outlet of the vortical loop slit atomizer and its influence mechanism on clogging phenomenon,the computational fluid dynamics(CFD)software Fluent is used to conduct a numerical simulation of the gas flow field in the atomizing chamber near the nozzle outlet of this atomizer under different annular slit widths,different atomization gas pressures and different protrusion lengths of the melt delivery tube. The results show that under atomization gas pressure p=4.5 MPa,the greater the annular slit width D,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the smaller the aspirating pressure at the front end of the melt delivery tube. These features can effectively prevent the occurrence of the clogging phenomenon of metallic melt. Under an annular slit width of D=1.2 mm,when the atomization gas pressure satisfies 1 MPa ≤ p ≤ 2 MPa and increases gradually,the aspirating pressure at the front end of the melt delivery tube will decline rapidly. This can prevent the clogging phenomenon of metallic melt. However,when the atomization gas pressure p >2 MPa,the greater the atomization gas pressure,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the greater the aspirating pressure at the front end of the melt delivery tube. Hence,the effect of preventing the solidification-induced clogging phenomenon of metallic melt is restricted. When atomization gas pressure is p =4.5 MPa and annular slit width is D=1.2 mm,the greater the protrusion length H of the melt delivery tube,and the smaller the aspirating pressure at its front end. The static temperature near the central hole that can be observed in its front end is approximate to effectively prevent the occurrence of clogging phenomenon of metallic melt. However,because of the small aspirating pressure,the metallic melt flows into the atomizing chamber from the central hole at the front end of the melt delivery tube at an increasing speed and the gas-melt ratio in the mass flow rate is reduced,which is not conducive to the improvement of atomization performance.展开更多
A two?dimensional axisymmetric numerical simulation was successfully carried out on the muzzle flow field of a 300 mm?caliber counter?mass propelling gun. Based on the FLUENT software,using the finite volume method(FV...A two?dimensional axisymmetric numerical simulation was successfully carried out on the muzzle flow field of a 300 mm?caliber counter?mass propelling gun. Based on the FLUENT software,using the finite volume method(FVM)and the realizable k?ε turbulence model,we adopted the holistic movement of a partitioned mesh processing method coupled with the intermediate ballistic model and the six degree?of?freedom model(6?DOF). We compared the flow field characteristics at the velocity of 1 730.4,978.3,and 323.4 m/s. The results indicate that the pressure of the hypersonic initial flow field is much higher than that of the subsonic and supersonic initial flow fields. In the case of the subsonic(323.4 m/s)flow field,the tiny disturbance spreads throughout the whole domain. But in the cases of the supersonic(978.3 m/s) and the hypersonic(1 730.4 m/s) flow fields,it cannot spread to the upstream disturbance source,and the disturbance domain of the supersonic flow field is wider than that of the hypersonic. It is noted that the subsonic flow field has a rounded shock wave before the projectile. However,in the supersonic and hypersonic flow fields,a shear layer is formed which begins from the head of the projectile and extends outward from the side of the projectile. Then a multi?layer shock wave is formed composed of coronal shock waves,bottom shock waves,reflected shock waves,and Mach disk.展开更多
The annular diffuser is an expansion area, which, despite its simple structure, is very important in some engineering and thermal applications. In the present research, numerical simulations were performed to investig...The annular diffuser is an expansion area, which, despite its simple structure, is very important in some engineering and thermal applications. In the present research, numerical simulations were performed to investigate the temperature field and flow structure characteristics in an annular diffuser. The hub of the annular diffuser consisted of a straight semi-dimpled tube SSDT. Three different diffuser wall angles (α) 1.8°, 3.6° and 5.4° with inlet Reynolds number 1.5 × 104?were studied in details with air as a working fluid. The computational fluid dynamics CFD was used to simulate the model in a turbulent flow. The standard k-ε turbulence model was used to complete the governing equations. The numerical results, mainly the temperature distribution, pressure drop and velocity distribution for the airflow in the annular diffuser fitted with SSDT for different diffuser wall angles α were obtained and compared. It was observed that as the wall diffuser angle α increases, the enhancement of the temperature distribution and the velocity distribution decrease while the pressure drop rate increases. The maximum temperature distribution and velocity distribution were completed by diffuser wall angle α1 = 1.8° whereas, the highest pressure drop achieved by diffuser wall angle α3 = 5.4°.展开更多
Geographic visualization is essential for explaining and describing spatiotemporal geographical processes in flow fields.However,due to multi-scale structures and irregular spatial distribution of vortices in complex ...Geographic visualization is essential for explaining and describing spatiotemporal geographical processes in flow fields.However,due to multi-scale structures and irregular spatial distribution of vortices in complex geographic flow fields,existing two-dimensional visualization methods are susceptible to the effects of data accuracy and sampling resolution,resulting in incomplete and inaccurate vortex information.To address this,we propose an adaptive Line Integral Convolution(LIC)based geographic flow field visualization method by means of rotation distance.Our novel framework of rotation distance and its quantification allows for the effective identification and extraction of vortex features in flow fields effectively.We then improve the LIC algorithm using rotation distance by constructing high-frequency noise from it as input to the convolution,with the integration step size adjusted.This approach allows us to effectively distinguish between vortex and non-vortex fields and adaptively represent the details of vortex features in complex geographic flow fields.Our experimental results show that the proposed method leads to more accurate and effective visualization of the geographic flow fields.展开更多
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Simulation and Test of the Flow Field of Gas Atomization Nozzle (No. 1001-KFA19184)。
文摘In order to study the basic characteristics of gas flow field in the atomizing chamber near the nozzle outlet of the vortical loop slit atomizer and its influence mechanism on clogging phenomenon,the computational fluid dynamics(CFD)software Fluent is used to conduct a numerical simulation of the gas flow field in the atomizing chamber near the nozzle outlet of this atomizer under different annular slit widths,different atomization gas pressures and different protrusion lengths of the melt delivery tube. The results show that under atomization gas pressure p=4.5 MPa,the greater the annular slit width D,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the smaller the aspirating pressure at the front end of the melt delivery tube. These features can effectively prevent the occurrence of the clogging phenomenon of metallic melt. Under an annular slit width of D=1.2 mm,when the atomization gas pressure satisfies 1 MPa ≤ p ≤ 2 MPa and increases gradually,the aspirating pressure at the front end of the melt delivery tube will decline rapidly. This can prevent the clogging phenomenon of metallic melt. However,when the atomization gas pressure p >2 MPa,the greater the atomization gas pressure,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the greater the aspirating pressure at the front end of the melt delivery tube. Hence,the effect of preventing the solidification-induced clogging phenomenon of metallic melt is restricted. When atomization gas pressure is p =4.5 MPa and annular slit width is D=1.2 mm,the greater the protrusion length H of the melt delivery tube,and the smaller the aspirating pressure at its front end. The static temperature near the central hole that can be observed in its front end is approximate to effectively prevent the occurrence of clogging phenomenon of metallic melt. However,because of the small aspirating pressure,the metallic melt flows into the atomizing chamber from the central hole at the front end of the melt delivery tube at an increasing speed and the gas-melt ratio in the mass flow rate is reduced,which is not conducive to the improvement of atomization performance.
基金supported in part by the National Natural Science Foundation of China (No. 51305204)
文摘A two?dimensional axisymmetric numerical simulation was successfully carried out on the muzzle flow field of a 300 mm?caliber counter?mass propelling gun. Based on the FLUENT software,using the finite volume method(FVM)and the realizable k?ε turbulence model,we adopted the holistic movement of a partitioned mesh processing method coupled with the intermediate ballistic model and the six degree?of?freedom model(6?DOF). We compared the flow field characteristics at the velocity of 1 730.4,978.3,and 323.4 m/s. The results indicate that the pressure of the hypersonic initial flow field is much higher than that of the subsonic and supersonic initial flow fields. In the case of the subsonic(323.4 m/s)flow field,the tiny disturbance spreads throughout the whole domain. But in the cases of the supersonic(978.3 m/s) and the hypersonic(1 730.4 m/s) flow fields,it cannot spread to the upstream disturbance source,and the disturbance domain of the supersonic flow field is wider than that of the hypersonic. It is noted that the subsonic flow field has a rounded shock wave before the projectile. However,in the supersonic and hypersonic flow fields,a shear layer is formed which begins from the head of the projectile and extends outward from the side of the projectile. Then a multi?layer shock wave is formed composed of coronal shock waves,bottom shock waves,reflected shock waves,and Mach disk.
文摘The annular diffuser is an expansion area, which, despite its simple structure, is very important in some engineering and thermal applications. In the present research, numerical simulations were performed to investigate the temperature field and flow structure characteristics in an annular diffuser. The hub of the annular diffuser consisted of a straight semi-dimpled tube SSDT. Three different diffuser wall angles (α) 1.8°, 3.6° and 5.4° with inlet Reynolds number 1.5 × 104?were studied in details with air as a working fluid. The computational fluid dynamics CFD was used to simulate the model in a turbulent flow. The standard k-ε turbulence model was used to complete the governing equations. The numerical results, mainly the temperature distribution, pressure drop and velocity distribution for the airflow in the annular diffuser fitted with SSDT for different diffuser wall angles α were obtained and compared. It was observed that as the wall diffuser angle α increases, the enhancement of the temperature distribution and the velocity distribution decrease while the pressure drop rate increases. The maximum temperature distribution and velocity distribution were completed by diffuser wall angle α1 = 1.8° whereas, the highest pressure drop achieved by diffuser wall angle α3 = 5.4°.
文摘Geographic visualization is essential for explaining and describing spatiotemporal geographical processes in flow fields.However,due to multi-scale structures and irregular spatial distribution of vortices in complex geographic flow fields,existing two-dimensional visualization methods are susceptible to the effects of data accuracy and sampling resolution,resulting in incomplete and inaccurate vortex information.To address this,we propose an adaptive Line Integral Convolution(LIC)based geographic flow field visualization method by means of rotation distance.Our novel framework of rotation distance and its quantification allows for the effective identification and extraction of vortex features in flow fields effectively.We then improve the LIC algorithm using rotation distance by constructing high-frequency noise from it as input to the convolution,with the integration step size adjusted.This approach allows us to effectively distinguish between vortex and non-vortex fields and adaptively represent the details of vortex features in complex geographic flow fields.Our experimental results show that the proposed method leads to more accurate and effective visualization of the geographic flow fields.