Ag dendritic nanostructures were synthesized on fluorine-doped tin oxide covered glass sub- strates by the electrodeposition method. Results demonstrate that the size, diameter, crys- tallinity, and branch density of ...Ag dendritic nanostructures were synthesized on fluorine-doped tin oxide covered glass sub- strates by the electrodeposition method. Results demonstrate that the size, diameter, crys- tallinity, and branch density of the Ag dendrites can be controlled by the applied potential, the surfactants and the concentration of AgNO3. Three kinds of typical silver dendrites were applied as substrates of the surface enhanced Raman scattering (SERS) and one of them was able to clearly detect rhodamine 6G concentrations up to 0.1 nmol/L. The differences of the SERS spectra at these Ag dendrites confirmed that the shapes and interparticle spacings have great effect on Raman enhancement, especially the interparticle spacings.展开更多
文摘Ag dendritic nanostructures were synthesized on fluorine-doped tin oxide covered glass sub- strates by the electrodeposition method. Results demonstrate that the size, diameter, crys- tallinity, and branch density of the Ag dendrites can be controlled by the applied potential, the surfactants and the concentration of AgNO3. Three kinds of typical silver dendrites were applied as substrates of the surface enhanced Raman scattering (SERS) and one of them was able to clearly detect rhodamine 6G concentrations up to 0.1 nmol/L. The differences of the SERS spectra at these Ag dendrites confirmed that the shapes and interparticle spacings have great effect on Raman enhancement, especially the interparticle spacings.
基金The project was supported by the National Natural Science Foundation of China(51406111)Shanghai Natural Science Foundation,China(14ZR1417000)+1 种基金Scientific Innovation Project of Shanghai Education Committee,China(15ZZ100)Young Eastern Scholar of Shanghai,China(QD2015052)~~