AVO forward modeling is based on two-phase medium theory and is considered an effective method for describing reservoir rocks and fluids. However, the method depends on the input matrix mineral bulk modulus and the ra...AVO forward modeling is based on two-phase medium theory and is considered an effective method for describing reservoir rocks and fluids. However, the method depends on the input matrix mineral bulk modulus and the rationality of the two-phase medium model. We used the matrix mineral bulk modulus inversion method and multiple constraints to obtain a two-phase medium model with physical meaning. The proposed method guarantees the reliability of the obtained AVO characteristicsin two-phase media. By the comparative analysis of different lithology of the core sample, the advantages and accuracy of the inversion method can be illustrated. Also, the inversion method can be applied in LH area, and the AVO characteristics can be obtained when the porosity, fluid saturation, and other important lithology parameters are changed. In particular, the reflection coefficient amplitude difference between the fast P wave and S wave as a function of porosity at the same incidence angle, and the difference in the incidence angle threshold can be used to decipher porosity.展开更多
The bottom simulating reflector (BSR) in gas hydrate-bearing sediments is a physical interface which is composed of solid, gas, and liquid and is influenced by temperature and pressure. Deep sea floor sediment is a ...The bottom simulating reflector (BSR) in gas hydrate-bearing sediments is a physical interface which is composed of solid, gas, and liquid and is influenced by temperature and pressure. Deep sea floor sediment is a porous, unconsolidated, fluid saturated media. Therefore, the reflection and transmission coefficients computed by the Zoeppritz equation based on elastic media do not match reality. In this paper, a two-phase media model is applied to study the reflection and transmission at the bottom simulating reflector in order to find an accurate wave propagation energy distribution and the relationship between reflection and transmission and fluid saturation on the BSR. The numerical experiments show that the type I compressional (fast) and shear waves are not sensitive to frequency variation and the velocities change slowly over the whole frequency range. However, type II compressional (slow) waves are more sensitive to frequency variation and the velocities change over a large range. We find that reflection and transmission coefficients change with the amount of hydrate and free gas. Frequency, pore fluid saturation, and incident angle have different impacts on the reflection and transmission coefficients. We can use these characteristics to estimate gas hydrate saturation or detect lithological variations in the gas hydrate-bearing sediments.展开更多
Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consum...Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consuming. In streamline method, transport equations are solved on one-dimensional streamlines to reduce the computation time with less memory for simulation. First, pressure equation is solved on an Eulerian grid and streamlines are traced. Defining the "time of flight", saturation equations are mapped and solved on streamlines. Finally, the results are mapped back on Eulerian grid and the process is repeated until the simulation end time. The waterflooding process is considered in a fractured reservoir using the dual porosity model. Afterwards, a computational code is developed to solve the same problem by the IMPES method and the results of streamline simulation are compared to those of the IMPES and a commercial software. Finally, the accuracy and efficiency of streamline simulator for simulation of two-phase flow in fractured reservoirs has been proved.展开更多
Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on e...Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on element faces.Discontinuity of velocity field leads this method not to conserve mass locally.Moreover,the accuracy and stability of a solution is highly affected by a non-conservative method.In this paper,a three dimensional control volume finite element method is developed for twophase fluid flow simulation which overcomes the deficiency of the standard finite element method,and attains high-orders of accuracy at a reasonable computational cost.Moreover,this method is capable of handling heterogeneity in a very rational way.A fully implicit scheme is applied to temporal discretization of the governing equations to achieve an unconditionally stable solution.The accuracy and efficiency of the method are verified by simulating some waterflooding experiments.Some representative examples are presented to illustrate the capability of the method to simulate two-phase fluid flow in heterogeneous porous media.展开更多
While experimental designs developed in recent decades have contributed to research on dynamic nonequilibrium effects in transient two-phase flow in porous media,this problem has been seldom investigated using direct ...While experimental designs developed in recent decades have contributed to research on dynamic nonequilibrium effects in transient two-phase flow in porous media,this problem has been seldom investigated using direct numerical simulation(DNS).Only a few studies have sought to numerically solve Navier—Stokes equations with level-set(LS)or volume-of-fluid(VoF)methods,each of which has constraints in terms of meniscus dynamics for various flow velocities in the control volume(CV)domain.The Shan—Chen multiphase multicomponent lattice Boltzmann method(SC-LBM)has a fundamental mechanism to separate immiscible fluid phases in the density domain without these limitations.Therefore,this study applied it to explore two-phase displacement in a single representative elementary volume(REV)of two-dimensional(2D)porous media.As a continuation of a previous investigation into one-step inflow/outflow in 2D porous media,this work seeks to identify dynamic nonequilibrium effects on capillary pressure—saturation relationship(P_(c)—S)for quasi-steady-state flow and multistep inflow/outflow under various pressure boundary conditions.The simulation outcomes show that P_(c),S and specific interfacial area(a_(nw))had multistep-wise dynamic effects corresponding to the multistep-wise pressure boundary conditions.With finer adjustments to the increase in pressure over more steps,dynamic nonequilibrium effects were significantly alleviated and even finally disappeared to achieve quasisteady-state inflow/outflow conditions.Furthermore,triangular wave-formed pressure boundary conditions were applied in different periods to investigate dynamic nonequilibrium effects for hysteretical Pc—S.The results showed overshoot and undershoot of P_(c)to S in loops of the nonequilibrium hysteresis.In addition,the flow regimes of multistep-wise dynamic effects were analyzed in terms of Reynolds and capillary numbers(Re and Ca).The analysis of REV-scale flow regimes showed higher Re(1<Re<10)for more significant dynamic nonequilibrium effects.This indicates that inertia is critical for transient twophase flow in porous media under dynamic nonequilibrium conditions.展开更多
Dispersion and attenuation occur while seismic wave travels through cracks filled with fluids,which lead to the anisotropism of seismic azimuthal travel time.Based on latest rock physics models,this study aims to simu...Dispersion and attenuation occur while seismic wave travels through cracks filled with fluids,which lead to the anisotropism of seismic azimuthal travel time.Based on latest rock physics models,this study aims to simulate seismic azimuthal moveout responses(AMR) and analyze the factors affecting this attribute.By numerical modeling,it is found that the AMR is very sensitive to the parameters of the cracks,especially these related to fluid;therefore AMR has the potential to qualitatively or even quantitatively identify cracks.展开更多
Based on Biot theory of two-phase anisotropic media and Hamilton theory about dynamic problem,finite element equations of elastic wave propagation in two-phase anisotropic media are derived in this paper.Numerical sol...Based on Biot theory of two-phase anisotropic media and Hamilton theory about dynamic problem,finite element equations of elastic wave propagation in two-phase anisotropic media are derived in this paper.Numerical solution of finite element equations is given.Finally,Properties of elastic wave propagation are observed and analyzed through FEM modeling.展开更多
A mathematical model of two-phase fluid nonlinear flow in the direction of normal of ellipse through low-permeability porous media was established according to a nonlinear flow law expressed in a continuous function w...A mathematical model of two-phase fluid nonlinear flow in the direction of normal of ellipse through low-permeability porous media was established according to a nonlinear flow law expressed in a continuous function with three parameters, a mass conservation law and a concept of turbulent ellipses. A solution to the model was obtained by using a finite difference method and an extrapolation method. Formulas of calculating development index not only before but also after water breaks through an oil well in the condition of two-phase fluid nonlinear flow in the media were derived. An example was discussed. Water saturation distribution was presented. The moving law of drainage front was found. Laws of change of pressure difference with time were recognized. Results show that there is much difference of water saturation distribution between nonlinear flow and linear flow; that drainage front by water moves faster, water breaks through sooner and the index gets worse because of the nonlinear flow; and that dimensionless pressure difference gets larger at the same dimensionless time and difficulty of oil development becomes bigger by the nonlinear flow. Thus, it is necessary that influence of nonlinear flow on development indexes of the oil fields be taken into account. The results provide water-flooding development of the oilfields with scientific basis.展开更多
This paper applies the convolutional differentiator method, based on generalized Forsyte orthogonal polynomial (CFPD), to simulate the seismic wave propagation in two-phase media. From the numerical results we can s...This paper applies the convolutional differentiator method, based on generalized Forsyte orthogonal polynomial (CFPD), to simulate the seismic wave propagation in two-phase media. From the numerical results we can see that three types of waves, fast P-waves, S-waves and slow P-waves, can be observed in the seismic wave field. The experiments on anisotropic models demonstrate that the wavefront is elliptic instead of circular and S-wave splitting occurs in anisotropic two-phase media. The research has confirmed that the rules of elastic wave propagation in fluid-saturated porous media are controlled by Biot's theory. Experiment on a layered fault model shows the wavefield generated by the interface and the fault very well, indicating the effectiveness of CFPD method on the wavefield modeling for real layered media in the Earth. This research has potential applications to the investigation of Earth's deep structure and oil/gas exploration.展开更多
In this paper, the accuracy of estimating stained non-wetting phase saturation using digital image processing is examined, and a novel post-processing approach for calculating threshold is presented. In order to remov...In this paper, the accuracy of estimating stained non-wetting phase saturation using digital image processing is examined, and a novel post-processing approach for calculating threshold is presented. In order to remove the effect of the background noise of images and to enhance the high-frequency component of the original image, image smoothing and image sharpening methods are introduced. Depending on the correct threshold, the image binarization processing is particularly useful for estimating stained non-wetting phase saturation. Calculated saturation data are compared with the measured saturation data during the two-phase flow experiment in an artificial steel planar porous media model. The results show that the calculated saturation data agree with the measured ones. With the help of an artificial steel planar porous media model, digital image processing is an accurate and simple method for obtaining the stained non-wetting phase saturation.展开更多
The generalized mixture rule (GMR) is usually applied in determining mechanical properties such as the rheological property and Young’s modulus of multi-phase rocks. However, it is rarely used to determine electric...The generalized mixture rule (GMR) is usually applied in determining mechanical properties such as the rheological property and Young’s modulus of multi-phase rocks. However, it is rarely used to determine electrical conductivity of multi-phase rocks presently. In this paper, we calculate the effective conductivity using the 3D finite element method for a large number of two-phase medium stochastic models. The GMR is then employed as an effective conductivity model to fit the data. It shows a very close relationship between the parameter J of GMR and the ratio of conductivities of the two phases. We obtain the equations of the parameter J with the ratio of conductivity of two phases for the first time. On this basis, we can quickly predict (or calculate) the effective conductivity of any twophase medium stochastic model. The result is much more accurate than two other available effective conductivity models for the stochastic medium, which are the random model and effective medium theory model, laying a solid base for detailed evaluation of oil reservoirs.展开更多
Tight oil reservoirs are complex geological materials composed of solid matrix,pore structure,and mixed multiple phases of fluids,particularly for oil reservoirs suffering from high content of in situ pressurized wate...Tight oil reservoirs are complex geological materials composed of solid matrix,pore structure,and mixed multiple phases of fluids,particularly for oil reservoirs suffering from high content of in situ pressurized water found in China.In this regard,a coupled model considering two-phase flow of oil and water,as well as deformation and damage evolution of porous media,is proposed and validated using associated results,including the oil depletion process,analytical solution of stress shadow effect,and physical experiments on multi-fracture interactions and fracture propagation in unsaturated seepage fields.Then,the proposed model is used to study the behavior of multi-fracture interactions in an unsaturated reservoir in presence of water and oil.The results show that conspicuous interactions exist among multiple induced fractures.Interaction behavior varies from extracted geological profiles of the reservoir due to in situ stress anisotropy.The differential pressures of water and that of oil in different regions of reservoir affect interactions and trajectories of multi-fractures to a considerable degree.The absolute value of reservoir average pressure is a dominant factor affecting fracture interactions and in favor of enhancing fracture network complexity.In addition,difference of reservoir average pressures in different regions of reservoir would promote the fracturing effectiveness.Factors affecting fracture interactions and reservoir treatment effectiveness are quantitatively estimated through stimulated reservoir area.This study confirms the significance of incorporating the two-phase flow process in analyses of multifracture interactions and fracture trajectory predictions during tight sandstone oil reservoir developments.展开更多
Anisotropy correction is necessary during the processing of converted PS- wave seismic data to achieve accurate structural imaging, reservoir prediction, and fracture detection. To effectively eliminate the adverse ef...Anisotropy correction is necessary during the processing of converted PS- wave seismic data to achieve accurate structural imaging, reservoir prediction, and fracture detection. To effectively eliminate the adverse effects of S-wave splitting and to improve PS- wave imaging quality, we tested methods for pre-stack migration imaging and anisotropic correction of PS-wave data. We based this on the propagation rules of seismic waves in a horizontal transverse isotropy medium, which is a fractured medium model that reflects likely subsurface conditions in the field. We used the radial (R) and transverse (T) components of PS-wave data to separate the fast and slow S-wave components, after which their propagation moveout was effectively extracted. Meanwhile, corrections for the energies and propagation moveouts of the R and T components were implemented using mathematical rotation. The PS-wave imaging quality was distinctly improved, and we demonstrated the reliability of our methods through numerical simulations. Applying our methods to three-dimensional and three-component seismic field data from the Xinchang-Hexingchang region of the Western Sichuan Depression in China, we obtained high-quality seismic imaging with continuous reflection wave groups, distinct structural features, and specific stratigraphic contact relationships. This study provides an effective and reliable approach for data processing that will improve the exploration of complex, hidden lithologic gas reservoirs.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41404101,41174114,41274130,and 41404102)
文摘AVO forward modeling is based on two-phase medium theory and is considered an effective method for describing reservoir rocks and fluids. However, the method depends on the input matrix mineral bulk modulus and the rationality of the two-phase medium model. We used the matrix mineral bulk modulus inversion method and multiple constraints to obtain a two-phase medium model with physical meaning. The proposed method guarantees the reliability of the obtained AVO characteristicsin two-phase media. By the comparative analysis of different lithology of the core sample, the advantages and accuracy of the inversion method can be illustrated. Also, the inversion method can be applied in LH area, and the AVO characteristics can be obtained when the porosity, fluid saturation, and other important lithology parameters are changed. In particular, the reflection coefficient amplitude difference between the fast P wave and S wave as a function of porosity at the same incidence angle, and the difference in the incidence angle threshold can be used to decipher porosity.
文摘The bottom simulating reflector (BSR) in gas hydrate-bearing sediments is a physical interface which is composed of solid, gas, and liquid and is influenced by temperature and pressure. Deep sea floor sediment is a porous, unconsolidated, fluid saturated media. Therefore, the reflection and transmission coefficients computed by the Zoeppritz equation based on elastic media do not match reality. In this paper, a two-phase media model is applied to study the reflection and transmission at the bottom simulating reflector in order to find an accurate wave propagation energy distribution and the relationship between reflection and transmission and fluid saturation on the BSR. The numerical experiments show that the type I compressional (fast) and shear waves are not sensitive to frequency variation and the velocities change slowly over the whole frequency range. However, type II compressional (slow) waves are more sensitive to frequency variation and the velocities change over a large range. We find that reflection and transmission coefficients change with the amount of hydrate and free gas. Frequency, pore fluid saturation, and incident angle have different impacts on the reflection and transmission coefficients. We can use these characteristics to estimate gas hydrate saturation or detect lithological variations in the gas hydrate-bearing sediments.
文摘Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consuming. In streamline method, transport equations are solved on one-dimensional streamlines to reduce the computation time with less memory for simulation. First, pressure equation is solved on an Eulerian grid and streamlines are traced. Defining the "time of flight", saturation equations are mapped and solved on streamlines. Finally, the results are mapped back on Eulerian grid and the process is repeated until the simulation end time. The waterflooding process is considered in a fractured reservoir using the dual porosity model. Afterwards, a computational code is developed to solve the same problem by the IMPES method and the results of streamline simulation are compared to those of the IMPES and a commercial software. Finally, the accuracy and efficiency of streamline simulator for simulation of two-phase flow in fractured reservoirs has been proved.
基金Iranian Offshore Oil Company (IOOC) for financial support of this work
文摘Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on element faces.Discontinuity of velocity field leads this method not to conserve mass locally.Moreover,the accuracy and stability of a solution is highly affected by a non-conservative method.In this paper,a three dimensional control volume finite element method is developed for twophase fluid flow simulation which overcomes the deficiency of the standard finite element method,and attains high-orders of accuracy at a reasonable computational cost.Moreover,this method is capable of handling heterogeneity in a very rational way.A fully implicit scheme is applied to temporal discretization of the governing equations to achieve an unconditionally stable solution.The accuracy and efficiency of the method are verified by simulating some waterflooding experiments.Some representative examples are presented to illustrate the capability of the method to simulate two-phase fluid flow in heterogeneous porous media.
基金University of Queensland International Scholarship(UQI)for its support(Grant No.42719692)。
文摘While experimental designs developed in recent decades have contributed to research on dynamic nonequilibrium effects in transient two-phase flow in porous media,this problem has been seldom investigated using direct numerical simulation(DNS).Only a few studies have sought to numerically solve Navier—Stokes equations with level-set(LS)or volume-of-fluid(VoF)methods,each of which has constraints in terms of meniscus dynamics for various flow velocities in the control volume(CV)domain.The Shan—Chen multiphase multicomponent lattice Boltzmann method(SC-LBM)has a fundamental mechanism to separate immiscible fluid phases in the density domain without these limitations.Therefore,this study applied it to explore two-phase displacement in a single representative elementary volume(REV)of two-dimensional(2D)porous media.As a continuation of a previous investigation into one-step inflow/outflow in 2D porous media,this work seeks to identify dynamic nonequilibrium effects on capillary pressure—saturation relationship(P_(c)—S)for quasi-steady-state flow and multistep inflow/outflow under various pressure boundary conditions.The simulation outcomes show that P_(c),S and specific interfacial area(a_(nw))had multistep-wise dynamic effects corresponding to the multistep-wise pressure boundary conditions.With finer adjustments to the increase in pressure over more steps,dynamic nonequilibrium effects were significantly alleviated and even finally disappeared to achieve quasisteady-state inflow/outflow conditions.Furthermore,triangular wave-formed pressure boundary conditions were applied in different periods to investigate dynamic nonequilibrium effects for hysteretical Pc—S.The results showed overshoot and undershoot of P_(c)to S in loops of the nonequilibrium hysteresis.In addition,the flow regimes of multistep-wise dynamic effects were analyzed in terms of Reynolds and capillary numbers(Re and Ca).The analysis of REV-scale flow regimes showed higher Re(1<Re<10)for more significant dynamic nonequilibrium effects.This indicates that inertia is critical for transient twophase flow in porous media under dynamic nonequilibrium conditions.
基金Supported by Project of National Natural Science Foundation of China(No.40874057)
文摘Dispersion and attenuation occur while seismic wave travels through cracks filled with fluids,which lead to the anisotropism of seismic azimuthal travel time.Based on latest rock physics models,this study aims to simulate seismic azimuthal moveout responses(AMR) and analyze the factors affecting this attribute.By numerical modeling,it is found that the AMR is very sensitive to the parameters of the cracks,especially these related to fluid;therefore AMR has the potential to qualitatively or even quantitatively identify cracks.
文摘Based on Biot theory of two-phase anisotropic media and Hamilton theory about dynamic problem,finite element equations of elastic wave propagation in two-phase anisotropic media are derived in this paper.Numerical solution of finite element equations is given.Finally,Properties of elastic wave propagation are observed and analyzed through FEM modeling.
文摘A mathematical model of two-phase fluid nonlinear flow in the direction of normal of ellipse through low-permeability porous media was established according to a nonlinear flow law expressed in a continuous function with three parameters, a mass conservation law and a concept of turbulent ellipses. A solution to the model was obtained by using a finite difference method and an extrapolation method. Formulas of calculating development index not only before but also after water breaks through an oil well in the condition of two-phase fluid nonlinear flow in the media were derived. An example was discussed. Water saturation distribution was presented. The moving law of drainage front was found. Laws of change of pressure difference with time were recognized. Results show that there is much difference of water saturation distribution between nonlinear flow and linear flow; that drainage front by water moves faster, water breaks through sooner and the index gets worse because of the nonlinear flow; and that dimensionless pressure difference gets larger at the same dimensionless time and difficulty of oil development becomes bigger by the nonlinear flow. Thus, it is necessary that influence of nonlinear flow on development indexes of the oil fields be taken into account. The results provide water-flooding development of the oilfields with scientific basis.
基金supported by the National Natural Science Foundation of China(Grant No.40874045)Special Funds for Sciences and Technology Research of Public Welfare Trades(Grant Nos. 200811021 and 201011042)
文摘This paper applies the convolutional differentiator method, based on generalized Forsyte orthogonal polynomial (CFPD), to simulate the seismic wave propagation in two-phase media. From the numerical results we can see that three types of waves, fast P-waves, S-waves and slow P-waves, can be observed in the seismic wave field. The experiments on anisotropic models demonstrate that the wavefront is elliptic instead of circular and S-wave splitting occurs in anisotropic two-phase media. The research has confirmed that the rules of elastic wave propagation in fluid-saturated porous media are controlled by Biot's theory. Experiment on a layered fault model shows the wavefield generated by the interface and the fault very well, indicating the effectiveness of CFPD method on the wavefield modeling for real layered media in the Earth. This research has potential applications to the investigation of Earth's deep structure and oil/gas exploration.
基金supported by the National Natural Science Foundation of China(Grant No51079043)the Special Fund for Public Welfare Industry of Ministry of Water Resources of China(Grants No200901064 and 201001020)the Research Innovation Program for College Graduates of Jiangsu Province(Grant No CXZZ11_0450)
文摘In this paper, the accuracy of estimating stained non-wetting phase saturation using digital image processing is examined, and a novel post-processing approach for calculating threshold is presented. In order to remove the effect of the background noise of images and to enhance the high-frequency component of the original image, image smoothing and image sharpening methods are introduced. Depending on the correct threshold, the image binarization processing is particularly useful for estimating stained non-wetting phase saturation. Calculated saturation data are compared with the measured saturation data during the two-phase flow experiment in an artificial steel planar porous media model. The results show that the calculated saturation data agree with the measured ones. With the help of an artificial steel planar porous media model, digital image processing is an accurate and simple method for obtaining the stained non-wetting phase saturation.
基金sponsored by National Natural Science Foundation of China (Grant No. 40874034)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-QN508)
文摘The generalized mixture rule (GMR) is usually applied in determining mechanical properties such as the rheological property and Young’s modulus of multi-phase rocks. However, it is rarely used to determine electrical conductivity of multi-phase rocks presently. In this paper, we calculate the effective conductivity using the 3D finite element method for a large number of two-phase medium stochastic models. The GMR is then employed as an effective conductivity model to fit the data. It shows a very close relationship between the parameter J of GMR and the ratio of conductivities of the two phases. We obtain the equations of the parameter J with the ratio of conductivity of two phases for the first time. On this basis, we can quickly predict (or calculate) the effective conductivity of any twophase medium stochastic model. The result is much more accurate than two other available effective conductivity models for the stochastic medium, which are the random model and effective medium theory model, laying a solid base for detailed evaluation of oil reservoirs.
基金funded by National Natural Science Foundation of China(Grant Nos.51761135102 and 51525402)the Fundamental Research Funds for the Central Universities(Grant No.N180105029)。
文摘Tight oil reservoirs are complex geological materials composed of solid matrix,pore structure,and mixed multiple phases of fluids,particularly for oil reservoirs suffering from high content of in situ pressurized water found in China.In this regard,a coupled model considering two-phase flow of oil and water,as well as deformation and damage evolution of porous media,is proposed and validated using associated results,including the oil depletion process,analytical solution of stress shadow effect,and physical experiments on multi-fracture interactions and fracture propagation in unsaturated seepage fields.Then,the proposed model is used to study the behavior of multi-fracture interactions in an unsaturated reservoir in presence of water and oil.The results show that conspicuous interactions exist among multiple induced fractures.Interaction behavior varies from extracted geological profiles of the reservoir due to in situ stress anisotropy.The differential pressures of water and that of oil in different regions of reservoir affect interactions and trajectories of multi-fractures to a considerable degree.The absolute value of reservoir average pressure is a dominant factor affecting fracture interactions and in favor of enhancing fracture network complexity.In addition,difference of reservoir average pressures in different regions of reservoir would promote the fracturing effectiveness.Factors affecting fracture interactions and reservoir treatment effectiveness are quantitatively estimated through stimulated reservoir area.This study confirms the significance of incorporating the two-phase flow process in analyses of multifracture interactions and fracture trajectory predictions during tight sandstone oil reservoir developments.
基金supported by the National Natural Science Foundation of China(Grant No.41574099)the National Key Science and Technology Special Projects(grant No.2016ZX05002004-005)
文摘Anisotropy correction is necessary during the processing of converted PS- wave seismic data to achieve accurate structural imaging, reservoir prediction, and fracture detection. To effectively eliminate the adverse effects of S-wave splitting and to improve PS- wave imaging quality, we tested methods for pre-stack migration imaging and anisotropic correction of PS-wave data. We based this on the propagation rules of seismic waves in a horizontal transverse isotropy medium, which is a fractured medium model that reflects likely subsurface conditions in the field. We used the radial (R) and transverse (T) components of PS-wave data to separate the fast and slow S-wave components, after which their propagation moveout was effectively extracted. Meanwhile, corrections for the energies and propagation moveouts of the R and T components were implemented using mathematical rotation. The PS-wave imaging quality was distinctly improved, and we demonstrated the reliability of our methods through numerical simulations. Applying our methods to three-dimensional and three-component seismic field data from the Xinchang-Hexingchang region of the Western Sichuan Depression in China, we obtained high-quality seismic imaging with continuous reflection wave groups, distinct structural features, and specific stratigraphic contact relationships. This study provides an effective and reliable approach for data processing that will improve the exploration of complex, hidden lithologic gas reservoirs.