期刊文献+
共找到56,476篇文章
< 1 2 250 >
每页显示 20 50 100
THE UPWIND OPERATOR SPLITTING FINITE DIFFERENCE METHOD FOR COMPRESSIBLE TWO-PHASE DISPLACEMENT PROBLEM AND ANALYSIS
1
作者 袁益让 《Acta Mathematica Scientia》 SCIE CSCD 2002年第4期489-499,共11页
For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation r... For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L 2 norm are derived to determine the error, in the approximate solution. 展开更多
关键词 two-phase displacement two-dimensional compressibility upwind operator splitting finite difference schemes convergence analysis
下载PDF
A Review on Sources,Extractions and Analysis Methods of a Sustainable Biomaterial:Tannins 被引量:2
2
作者 Antonio Pizzi Marie-Pierre Laborie Zeki Candan 《Journal of Renewable Materials》 EI CAS 2024年第3期397-425,共29页
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ... Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses. 展开更多
关键词 TANNINS FLAVONOIDS SOURCES extraction methods analysis methods
下载PDF
Generalized nth-Order Perturbation Method Based on Loop Subdivision Surface Boundary Element Method for Three-Dimensional Broadband Structural Acoustic Uncertainty Analysis
3
作者 Ruijin Huo Qingxiang Pei +1 位作者 Xiaohui Yuan Yanming Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期2053-2077,共25页
In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Mill... In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Miller method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic field,and the nth-order discretization formulation of the boundary integral equation is derived.In addition,the computation of loop subdivision surfaces and the subdivision rules are introduced.In order to confirm the effectiveness of the algorithm,the computed results are contrasted and analyzed with the results under Monte Carlo simulations(MCs)through several numerical examples. 展开更多
关键词 Perturbation method loop subdivision surface isogeometric boundary element method uncertainty analysis
下载PDF
Numerical Simulation of Oil-Water Two-Phase Flow in Low Permeability Tight Reservoirs Based on Weighted Least Squares Meshless Method
4
作者 Xin Liu Kai Yan +3 位作者 Bo Fang Xiaoyu Sun Daqiang Feng Li Yin 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1539-1552,共14页
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp... In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production. 展开更多
关键词 Weighted least squares method meshless method numerical simulation of low permeability tight reservoirs oil-water two-phase flow fracture half-length
下载PDF
Dynamic Coupling Analysis of Semisubmersible Platform Float-over Method for Docking Case
5
作者 DING Hongyan QIN Licheng +2 位作者 ZHANG Puyang SONG Zhengrong XIE Weiwei 《Journal of Ocean University of China》 CAS CSCD 2024年第2期345-357,共13页
In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible plat... In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible platform was performed.Relevant hydrodynamic parameters were obtained using the retardation function method of three-dimensional frequency-domain potential flow theory.The results of the hydrodynamic analysis were highly consistent with the test findings,verifying the accuracy of the multifloating hydrodynamic coupling analysis,and key hydrodynamic parameters were solved for different water depths and the coupling effect.According to the obtained results,the hydrodynamic influence was the largest in shallow waters when the coupling effect was considered.Furthermore,the coupled motion equation combined with viscous damping,fender system,and mooring system was established,and the hydrodynamics,floating body motion,and dynamic response of the fender system were analyzed.Motion analysis revealed good agreement among the surge,sway,and yaw motions of the two floating bodies.However,when the wave period reached 10 s,the motion of the two floating bodies showed severe shock,and a relative motion was also observed.Therefore,excessive constraints should be added between the two floating bodies during construction to ensure construction safety.The numerical analysis and model test results of the semisubmersible platform and HYSY 229 barge at a water depth of 42 m and sea conditions of 0°,45°,and 90° were in good agreement,and the error was less than 5%.The maximum movement of the HYSY 229 barge reached 2.61 m in the sway direction,whereas that of the semisubmersible platform was 2.11 m.During construction,excessive constraints should be added between the two floating bodies to limit their relative movement and ensure construction safety. 展开更多
关键词 float-over method semisubmersible platform coupling hydrodynamic fender system time-domain analysis
下载PDF
Simplified quantitative analysis method and its application in the insitu synthesized copper-based azide chips
6
作者 Jie Ren Yunfeng Li +3 位作者 Mingyu Li Xingyu Wu Jiabao Wang Qingxuan Zeng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期309-316,共8页
Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ ... Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ synthesis method,including small size and low dosage,bring about difficulties in quantitative analysis and differences in ignition capabilities of CA chips.The aim of present work is to develop a simplified quantitative analysis method for accurate and safe analysis of components in CA chips to evaluate and investigate the corresponding ignition ability.In this work,Cu(N_(3))2 and CuN_(3)components in CA chips were separated through dissolution and distillation by utilizing the difference in solubility and corresponding content was obtained by measuring N_(3)-concentration through spectrophotometry.The spectrophotometry method was optimized by studying influencing factors and the recovery rate of different separation methods was studied,ensuring the accuracy and reproducibility of test results.The optimized method is linear in range from 1.0-25.0 mg/L,with a correlation coefficient R^(2)=0.9998,which meets the requirements of CA chips with a milligram-level content test.Compared with the existing ICP method,component analysis results of CA chips obtained by spectrophotometry are closer to real component content in samples and have satisfactory accuracy.Moreover,as its application in miniaturized explosive systems,the ignition ability of CA chips with different component contents for direct ink writing CL-20 and the corresponding mechanism was studied.This study provided a basis and idea for the design and performance evaluation of CA chips in miniaturized explosive systems. 展开更多
关键词 Copper-based azide chips SPECTROPHOTOMETRY Separation method Quantitative analysis Ignition ability
下载PDF
Reliability analysis of carbon fiber rod-reinforced umbilical cable under tension using an improved sampling method
7
作者 Yu Zhang Hong-Yu Zhang +2 位作者 Ran Xia Si-Ao Jiang Fang Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2769-2778,共10页
The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is... The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is a composite structure comprising multiple functional units,the reliability analysis of such cables involves numerous parameters that can impact calculation efficiency.In this paper,the reliability analysis of a new kind of umbilical cable with carbon fiber rod under tension is analyzed.The global dynamic analytical model is first established to determine the maximum tension load,then the local analytical model of umbilical cable including each unit are constructed by finite element method(FEM).Based on the mechanical analytical model,the reliability of umbilical cable under tension load is studied using response surface method(RSM)and Monte Carlo method.During the calculation process,a new tangent plane sampling method to calculate the response surface function(RSF)is proposed in this paper,which could make sampling points faster come close to the RSF curve,and it is proved that the calculation efficiency increases about 33%comparing with traditional method. 展开更多
关键词 Umbilical cable Carbon fiber rod Failure analysis Response surface method Reliability
下载PDF
AHermitian C^(2) Differential Reproducing Kernel Interpolation Meshless Method for the 3D Microstructure-Dependent Static Flexural Analysis of Simply Supported and Functionally Graded Microplates
8
作者 Chih-Ping Wu Ruei-Syuan Chang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期917-949,共33页
This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredepend... This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant. 展开更多
关键词 Consistent/modified couple stress theory differential reproducing kernel methods microplates point collocation methods static flexural 3D microstructure-dependent analysis
下载PDF
Superconvergence of Direct Discontinuous Galerkin Methods:Eigen-structure Analysis Based on Fourier Approach
9
作者 Xuechun Liu Haijin Wang +1 位作者 Jue Yan Xinghui Zhong 《Communications on Applied Mathematics and Computation》 EI 2024年第1期257-278,共22页
This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis techniq... This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis technique to symbolically compute eigenvalues and eigenvectors of the amplification matrices for both DDG methods with different coefficient settings in the numerical fluxes.Based on the eigen-structure analysis,we carry out error estimates of the DDG solutions,which can be decomposed into three parts:(i)dissipation errors of the physically relevant eigenvalue,which grow linearly with the time and are of order 2k for P^(k)(k=2,3)approximations;(ii)projection error from a special projection of the exact solution,which is decreasing over the time and is related to the eigenvector corresponding to the physically relevant eigenvalue;(iii)dissipative errors of non-physically relevant eigenvalues,which decay exponentially with respect to the spatial mesh sizeΔx.We observe that the errors are sensitive to the choice of the numerical flux coefficient for even degree P^(2)approximations,but are not for odd degree P^(3)approximations.Numerical experiments are provided to verify the theoretical results. 展开更多
关键词 Direct discontinuous Galerkin(DDG)method with interface correction Symmetric DDG method SUPERCONVERGENCE Fourier analysis Eigen-structure
下载PDF
A novel box-counting method for quantitative fractal analysis of threedimensional pore characteristics in sandstone
10
作者 Huiqing Liu Heping Xie +2 位作者 Fei Wu Cunbao Li Renbo Gao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期479-489,共11页
Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media withi... Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media within these rocks.Faced with the challenge of calculating the three-dimensional fractal dimensions of rock porosity,this study proposes an innovative computational process that directly calculates the three-dimensional fractal dimensions from a geometric perspective.By employing a composite denoising approach that integrates Fourier transform(FT)and wavelet transform(WT),coupled with multimodal pore extraction techniques such as threshold segmentation,top-hat transformation,and membrane enhancement,we successfully crafted accurate digital rock models.The improved box-counting method was then applied to analyze the voxel data of these digital rocks,accurately calculating the fractal dimensions of the rock pore distribution.Further numerical simulations of permeability experiments were conducted to explore the physical correlations between the rock pore fractal dimensions,porosity,and absolute permeability.The results reveal that rocks with higher fractal dimensions exhibit more complex pore connectivity pathways and a wider,more uneven pore distribution,suggesting that the ideal rock samples should possess lower fractal dimensions and higher effective porosity rates to achieve optimal fluid transmission properties.The methodology and conclusions of this study provide new tools and insights for the quantitative analysis of complex pores in rocks and contribute to the exploration of the fractal transport properties of media within rocks. 展开更多
关键词 3D fractal analysis Fractal dimension Rock pore structure Box-counting method Permeability simulation Computational geosciences
下载PDF
Numerical Analysis of Bacterial Meningitis Stochastic Delayed Epidemic Model through Computational Methods
11
作者 Umar Shafique Mohamed Mahyoub Al-Shamiri +3 位作者 Ali Raza Emad Fadhal Muhammad Rafiq Nauman Ahmed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期311-329,共19页
Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challeng... Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challenge.This study investigates a bacterial meningitis model through deterministic and stochastic versions.Four-compartment population dynamics explain the concept,particularly the susceptible population,carrier,infected,and recovered.The model predicts the nonnegative equilibrium points and reproduction number,i.e.,the Meningitis-Free Equilibrium(MFE),and Meningitis-Existing Equilibrium(MEE).For the stochastic version of the existing deterministicmodel,the twomethodologies studied are transition probabilities and non-parametric perturbations.Also,positivity,boundedness,extinction,and disease persistence are studiedrigorouslywiththe helpofwell-known theorems.Standard and nonstandard techniques such as EulerMaruyama,stochastic Euler,stochastic Runge Kutta,and stochastic nonstandard finite difference in the sense of delay have been presented for computational analysis of the stochastic model.Unfortunately,standard methods fail to restore the biological properties of the model,so the stochastic nonstandard finite difference approximation is offered as an efficient,low-cost,and independent of time step size.In addition,the convergence,local,and global stability around the equilibria of the nonstandard computational method is studied by assuming the perturbation effect is zero.The simulations and comparison of the methods are presented to support the theoretical results and for the best visualization of results. 展开更多
关键词 Bacterial Meningitis disease stochastic delayed model stability analysis extinction and persistence computational methods
下载PDF
A vector sum analysis method for stability evolution of expansive soil slope considering shear zone damage softening
12
作者 Junbiao Yan Lingwei Kong +1 位作者 Cheng Chen Mingwei Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3746-3759,共14页
Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering cons... Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior. 展开更多
关键词 Expansive soil slope Stability analysis Ring shear test Vector sum method Damage model Strain softening
下载PDF
Hydraulic Fracture Parameter Inversion Method for Shale GasWells Based on Transient Pressure-Drop Analysis during Hydraulic Fracturing Shut-in Period
13
作者 Shangjun Gao Yang Yang +4 位作者 Man Chen Jian Zheng Luqi Qin Xiangyu Liu Jianying Yang 《Energy Engineering》 EI 2024年第11期3305-3329,共25页
Horizontal well drilling and multi-stage hydraulic fracturing are key technologies for the development of shale gas reservoirs.Instantaneous acquisition of hydraulic fracture parameters is crucial for evaluating fract... Horizontal well drilling and multi-stage hydraulic fracturing are key technologies for the development of shale gas reservoirs.Instantaneous acquisition of hydraulic fracture parameters is crucial for evaluating fracturing effectiveness,optimizing processes,and predicting gas productivity.This paper establishes a transient flow model for shale gas wells based on the boundary element method,achieving the characterization of stimulated reservoir volume for a single stage.By integrating pressure monitoring data following the pumping shut-in period of hydraulic fracturing for well testing interpretation,a workflow for inverting fracture parameters of shale gas wells is established.This new method eliminates the need for prolonged production testing and can interpret parameters of individual hydraulic fracture segments,offering significant advantages over the conventional pressure transient analysismethod.The practical application of thismethodology was conducted on 10 shale gaswellswithin the Changning shale gas block of Sichuan,China.The results show a high correlation between the interpreted single-stage total length and surface area of hydraulic fractures and the outcomes of gas production profile tests.Additionally,significant correlations are observed between these parameters and cluster number,horizontal stress difference,and natural fracture density.This demonstrates the effectiveness of the proposed fracture parameter inversion method and the feasibility of field application.The findings of this study aim to provide solutions and references for the inversion of fracture parameters in shale gas wells. 展开更多
关键词 Well test analysis shale gas hydraulic fracturing boundary element method fracturing effect evaluation
下载PDF
Application of Choquet Integral-Importance-Performance Analysis and TOPSIS Methods in Approaching the Preference Factors of Calligraphy and Seal Engraving Imagery
14
作者 Yu Hsuan Chang Jiann Sheng Jiang Min Min Lin 《Journal of Contemporary Educational Research》 2024年第5期276-288,共13页
Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Call... Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Calligraphy and seal engraving,as two closely related systems in traditional Chinese art,have developed through the ages.Due to changes in lifestyle and advancements in modern technology,their original functions of daily writing and verification have gradually diminished.Instead,they have increasingly played a significant role in commercial art.This study utilizes the Evaluation Grid Method(EGM)and the Analytic Hierarchy Process(AHP)to research the key preference factors in the application of calligraphy and seal engraving imagery.Different from the traditional 5-point equal interval semantic questionnaire,this study employs a non-equal interval semantic questionnaire with a golden ratio scale,distinguishing the importance ratio of adjacent semantic meanings and highlighting the weighted emphasis on visual aesthetics.Additionally,the study uses Importance-Performance Analysis(IPA)and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)to obtain the key preference sequence of calligraphy and seal engraving culture.Plus,the Choquet integral comprehensive evaluation is used as a reference for IPA comparison.It is hoped that this study can provide cultural imagery references and research methods,injecting further creativity into industrial design. 展开更多
关键词 Evaluation Grid method Analytic Hierarchy Process CALLIGRAPHY Seal engraving Importance-Performance analysis Choquet integral TOPSIS
下载PDF
Numerical modeling and parametric sensitivity analysis of heat transfer and two-phase oil and water flow characteristics in horizontal and inclined flowlines using OpenFOAM 被引量:2
15
作者 Nsidibe Sunday Abdelhakim Settar +1 位作者 Khaled Chetehouna Nicolas Gascoin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1183-1199,共17页
Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to ... Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to the temperature difference between the fluids and the surroundings. Heat transfer analysis is very important for the prediction and prevention of deposits in oil and water flowlines, which could impede the flow and give rise to huge financial losses. Therefore, a 3D mathematical model of oil-water Newtonian flow under non-isothermal conditions is established to explore the complex mechanisms of the two-phase oil-water transportation and heat transfer in different flowline inclinations. In this work, a non-isothermal two-phase flow model is first modified and then implemented in the InterFoam solver by introducing the energy equation using OpenFOAM® code. The Low Reynolds Number (LRN) k-ε turbulence model is utilized to resolve the turbulence phenomena within the oil and water mixtures. The flow patterns and the local heat transfer coefficients (HTC) for two-phase oil-water flow at different flowlines inclinations (0°, +4°, +7°) are validated by the experimental literature results and the relative errors are also compared. Global sensitivity analysis is then conducted to determine the effect of the different parameters on the performance of the produced two-phase hydrocarbon systems for effective subsea fluid transportation. Thereafter, HTC and flow patterns for oil-water flows at downward inclinations of 4°, and 7° can be predicted by the models. The velocity distribution, pressure gradient, liquid holdup, and temperature variation at the flowline cross-sections are simulated and analyzed in detail. Consequently, the numerical model can be generally applied to compute the global properties of the fluid and other operating parameters that are beneficial in the management of two-phase oil-water transportation. 展开更多
关键词 Flow assurance Flow pattern Heat transfer Flowlines two-phase flow Global sensitivity analysis
下载PDF
EVOLUTION FILTRATION PROBLEMS WITH SEAWATER INTRUSION: TWO-PHASE FLOW DUAL MIXED VARIATIONAL ANALYSIS 被引量:1
16
作者 Gonzalo ALDUNCIN 《Acta Mathematica Scientia》 SCIE CSCD 2015年第5期1142-1162,共21页
Tow-phase flow mixed variational formulations of evolution filtration problems with seawater intrusion are analyzed. A dual mixed fractional flow velocity-pressure model is considered with an air-fresh water and a fre... Tow-phase flow mixed variational formulations of evolution filtration problems with seawater intrusion are analyzed. A dual mixed fractional flow velocity-pressure model is considered with an air-fresh water and a fresh water-seawater characterization. For analysis and computational purposes, spatial decompositions based on nonoverlapping multidomains, above and below the sea level, are variationally introduced with internal boundary fluxes dualized as weak transmission constraints. Further, parallel augmented and exactly penalized duality algorithms, and proximation semi-implicit time marching schemes, are established and analyzed. 展开更多
关键词 two-phase flow in coastal aquifers fractional two-phase flow dual mixed variational analysis macro-hybrid variational formulations augmented exactly penalized duality algorithms proximation semi-implicit time marching schemes
下载PDF
Comparison of One-Dimensional Analysis with Experiment for CO<sub>2</sub>Two-Phase Nozzle Flow 被引量:1
17
作者 Wakana Tsuru Satoshi Ueno +1 位作者 Yoichi Kinoue Norimasa Shiomi 《Open Journal of Fluid Dynamics》 2014年第5期415-424,共10页
The aim of this study is to investigate CO2 two-phase nozzle flow in terms of both experimental and analytical aspects for the optimum design of two-phase flow nozzle of CO2 two-phase flow ejector. In the experiment, ... The aim of this study is to investigate CO2 two-phase nozzle flow in terms of both experimental and analytical aspects for the optimum design of two-phase flow nozzle of CO2 two-phase flow ejector. In the experiment, it is measured that the temperature profile in the stream-wise direction of a divergent-convergent nozzle through which CO2 in the supercritical pressure condition is blown down into the atmosphere. In the analysis, a one-dimensional model which assumes steady, adiabatic, frictionless, and equilibrium is proposed. In the convergent part of the nozzle the flow is treated as single-phase flow of liquid, whereas in the divergent part the flow is treated as separated two-phase flow with saturated condition. The analytical results indicate that the temperature and the pressure decrease rapidly in the divergent part, and the void fraction increases immediately near the throat. Although this analysis is quite simple, the analytical results can follow the experimental results well within this study. 展开更多
关键词 Carbon Dioxide High-Speed Nozzle FLOW Gas-Liquid two-phase FLOW with Phase Change Blow down Test ONE-DIMENSIONAL analysis
下载PDF
Transient pressure analysis of polymer flooding fractured wells with oil-water two-phase flow
18
作者 WANG Yang YU Haiyang +2 位作者 ZHANG Jia FENG Naichao CHENG Shiqing 《Petroleum Exploration and Development》 2023年第1期175-182,共8页
The oil-water two-phase flow pressure-transient analysis model for polymer flooding fractured well is established by considering the comprehensive effects of polymer shear thinning,shear thickening,convection,diffusio... The oil-water two-phase flow pressure-transient analysis model for polymer flooding fractured well is established by considering the comprehensive effects of polymer shear thinning,shear thickening,convection,diffusion,adsorption retention,inaccessible pore volume and effective permeability reduction.The finite volume difference and Newton iteration methods are applied to solve the model,and the effects of fracture conductivity coefficient,injected polymer mass concentration,initial polymer mass concentration and water saturation on the well-test type curves of polymer flooding fractured wells are discussed.The results show that with the increase of fracture conductivity coefficient,the pressure conduction becomes faster and the pressure drop becomes smaller,so the pressure curve of transitional flow goes downward,the duration of bilinear flow becomes shorter,and the linear flow appears earlier and lasts longer.As the injected polymer mass concentration increases,the effective water phase viscosity increases,and the pressure loss increases,so the pressure and pressure derivative curves go upward,and the bilinear flow segment becomes shorter.As the initial polymer mass concentration increases,the effective water phase viscosity increases,so the pressure curve after the wellbore storage segment moves upward as a whole.As the water saturation increases,the relative permeability of water increases,the relative permeability of oil decreases,the total oil-water two-phase mobility becomes larger,and the pressure loss is reduced,so the pressure curve after the wellbore storage segment moves downward as a whole.The reliability and practicability of this new model are verified by the comparison of the results from simplified model and commercial well test software,and the actual well test data. 展开更多
关键词 fractured vertical well polymer flooding two-phase flow well test analysis model type curve influence factor
下载PDF
Kinetics analysis of decomposition of vanadium slag by KOH sub-molten salt method 被引量:16
19
作者 刘挥彬 杜浩 +3 位作者 王大卫 王少娜 郑诗礼 张懿 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1489-1500,共12页
A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring sp... A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring speed on vanadium and chromium extraction were studied. The results suggest that the reaction temperature and KOH-to-ore mass ratio are more influential factors for the extraction of vanadium and chromium. Under the optimal reaction conditions (temperature 180 °C, initial KOH-to-ore mass ratio 4:1, stirring speed 700 r/min, gas flow 1 L/min, and reaction time 300 min), vanadium and chromium extraction rates can reach up to 95% and 90%, respectively. Kinetics analysis results show that the decomposing process of vanadium slag in KOH sub-molten salt can be well interpreted by the shrinking core model under internal diffusion control. The apparent activation energies for vanadium and chromium are 40.54 and 50.27 kJ/mol, respectively. 展开更多
关键词 vanadium slag SPINEL sub-molten salt method kinetics analysis DECOMPOSITION activation energy
下载PDF
Application of the Sub-Model Method in the Engine Strength Analysis 被引量:9
20
作者 邹文胜 左正兴 +1 位作者 冯慧华 廖日东 《Journal of Beijing Institute of Technology》 EI CAS 2001年第3期260-265,共6页
On the basis of introducing the fundamental theory and the basic analysis steps of the sub model method, the strength of the new engine complex assembly structure was analyzed according to the properties of the engin... On the basis of introducing the fundamental theory and the basic analysis steps of the sub model method, the strength of the new engine complex assembly structure was analyzed according to the properties of the engine structures, some of the key parts of the engine were analyzed with refined mesh by sub model method and the error of the FEM solution was estimated by the extrapolation method. The example showed that the sub model can not only analyze the comlex structures without the restriction of the software and hardware of the computers, but get the more precise analysis result also. This method is more suitable for the strength analysis of the complex assembly structure. 展开更多
关键词 sub model method ENGINE strength analysis FEM
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部