Chlorella pyrenoidosa,a type of lipid-rich green algae,features broad prospects for application in such fields as healthy foods,biodiesel and so on.The light-utilizing efficiency of the cells is a critical factor that...Chlorella pyrenoidosa,a type of lipid-rich green algae,features broad prospects for application in such fields as healthy foods,biodiesel and so on.The light-utilizing efficiency of the cells is a critical factor that influences the biomass and lipid contents of photoautotrophic microalgae.Inconsistent illumination wavelengths hinder microalgal growth.The patterns about the impacts of mixed light emitting diode(LED)wavelengths or two-phase culture over the growth and lipid accumulation of Chlorella pyrenoidosa were reported.Among the different LED wavelengths(white,purple,blue,green,yellow and red)at the light intensity of 200μmol/m2·s tested,red and green gave maximum biomass and lipid contents,respectively.Based on the discovery,two-phase(red was illuminated for 12 d in the first phase,and then shifted to green light for 8 d in the second phase,R→G)or mixed LED(R:G=3:7 or R:G=7:3)culture protocol was adopted for the high lipid-accumulation of Chlorella pyrenoidosa.The results indicated that the lipid contents of Chlorella pyrenoidosa treated with two-phase(R→G)or mixed LED culture was significantly higher than that of white light with the same intensity(p<0.05),and the highest lipid-accumulation rate was 26.37 mg/L·d in the two-phase culture.Fatty acid(FA)analysis showed that 13 types FAs were detected and unsaturated FAs were over 50%(w/w).26.8%-27.7%(w/w)palmitic acid(C16:0)was the major saturated FA,while the largest proportions of monounsaturated FA and polyunsaturated FA were oleic acid(C18:1)and linoleic acid(C18:2),respectively.Additionally,although no difference in the FA composition of Chlorella pyrenoidosa treated with different protocols was found,the absolute content did differ significantly,coinciding with that of the total lipids.Furthermore,the ratio of unsaturated FAs in Chlorella pyrenoidosa was significantly increased under the mixed LED(R:G=7:3)(p<0.05).展开更多
Two-phase anaerobic digestion process is influenced by acid control for hydrogen production, reaction temperature, substrate detention time, sludge activity, and granular formation. Al of these technological parameter...Two-phase anaerobic digestion process is influenced by acid control for hydrogen production, reaction temperature, substrate detention time, sludge activity, and granular formation. Al of these technological parameters are directly related to success or failure of the system operation and treatment effect.展开更多
The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,an...The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.展开更多
Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ...Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.展开更多
Tissue culture techniques were used to produce large amounts of bioactive compounds with medicinal potential, overcoming space and time constraints for cancer prevention. Rice callus suspension cultures(RCSC) and seed...Tissue culture techniques were used to produce large amounts of bioactive compounds with medicinal potential, overcoming space and time constraints for cancer prevention. Rice callus suspension cultures(RCSC) and seed extracts prepared from aromatic rice varieties were used to evaluate the cytotoxic impact on human colon and lung cancer cell lines, as well as a normal control cell line, using Taxol as a positive control. RCSC and seed extracts from two Indian aromatic rice varieties were applied at different concentrations to treat the cancer cell lines and normal lung fibroblasts over varying time intervals. Apoptosis was assessed in 1:5 dilutions of the A549 and HT-29 cell lines treated with RCSC for 72 h, using propidium iodide staining and flow cytometry. RCSC showed a more potent cytotoxic effect than seed extracts with minimal effect on the normal cell line, in contrast to Taxol. Confocal microscopy and flow cytometry further confirmed the apoptotic effect of RCSC. Gas chromatography-mass spectrometry-based metabolic profiling identified metabolites involved in cytotoxicity and highlighted altered pathways. RCSC is proposed as an alternative source for the development of novel anticancer drugs with reduced side effects.展开更多
Understanding fingering, as a challenge to stable displacement during the immiscible flow, has become a crucial phenomenon for geological carbon sequestration, enhanced oil recovery, and groundwater protection. Typica...Understanding fingering, as a challenge to stable displacement during the immiscible flow, has become a crucial phenomenon for geological carbon sequestration, enhanced oil recovery, and groundwater protection. Typically governed by gravity, viscous and capillary forces, these factors lead invasive fluids to occupy pore space irregularly and incompletely. Previous studies have demonstrated capillary numbers,describing the viscous and capillary forces, to quantificationally induce evolution of invasion patterns.While the evolution mechanisms of invasive patterns have not been deeply elucidated under the constant capillary number and three variable parameters including velocity, viscosity, and interfacial tension.Our research employs two horizontal visualization systems and a two-phase laminar flow simulation to investigate the tendency of invasive pattern transition by various parameters at the pore scale. We showed that increasing invasive viscosity or reducing interfacial tension in a homogeneous pore space significantly enhanced sweep efficiency, under constant capillary number. Additionally, in the fingering crossover pattern, the region near the inlet was prone to capillary fingering with multi-directional invasion, while the viscous fingering with unidirectional invasion was more susceptible occurred in the region near the outlet. Furthermore, increasing invasive viscosity or decreasing invasive velocity and interfacial tension promoted the extension of viscous fingering from the outlet to the inlet, presenting that the subsequent invasive fluid flows toward the outlet. In the case of invasive trunk along a unidirectional path, the invasive flow increased exponentially closer to the outlet, resulting in a significant decrease in the width of the invasive interface. Our work holds promising applications for optimizing invasive patterns in heterogeneous porous media.展开更多
Background: Over the past 20 years, cultured meat has drawn a lot of public attention as a potential solution to issues with animal husbandry, including inadequate use of natural sources, improper animal welfare pract...Background: Over the past 20 years, cultured meat has drawn a lot of public attention as a potential solution to issues with animal husbandry, including inadequate use of natural sources, improper animal welfare practices, and possible risks to public health and safety. The novel method of producing meat through culture reduces the need for animals to produce muscle fiber, thereby obviating the necessity for animal slaughter. Apart from its ethical advantages, cultured meat presents a possible way to fulfill the expanding need for food among growing populations. The purpose of this research was to find out whether Turkish students would be willing to pay for and accept cultured meat. Technique: Method: 371 university students who willingly consented to fill out a questionnaire and provide demographic data make up the research sample. Questions from previous studies on the acceptability of cultured meat were compiled to create the survey. The research’s data collection took place in March and April of 2022. The research was completed in June 2022 after the data had been processed and analyzed. Results: The results showed that the majority of participants were female and had omnivorous eating habits. Based on the results of the Bonferroni correction test, students with a higher intention to purchase and consume cultured meat were those who received economics and business education. Students with two years of university education had a higher overall survey score than those with four years of education (p < 0.05). Furthermore, it is discovered that there is a negative correlation between the participants’ ages and their Factor 2 (using cultured meat as an alternative to industrial meat) and Factor 3 (consuming and purchasing it) section points (r = -109, p = 0.036) (r = -0.121, p = 0.019). In conclusion, university students generally have a negative outlook on health-related issues, such as eating cultured meat as an alternative.展开更多
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni...Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.展开更多
A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analy...A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analyses presented by Chen et al.(2022),in which the sea access roads are semi-immersed.In this new configuration,the sea access roads are placed above the still water level,therefore the presence of the air phase becomes a relevant issue in the determination of the wave forces acting on the structures.Indeed,the comparison of wave forces on the open-type sea access roads obtained from the single and two-phase SPH models with the experimental results shows that the latter are in much better agreement.So in the numerical simulations,a two-phaseδ-SPH model is adopted to investigate the dynamical problems.Based on the numerical results,the maximum horizontal and uplifting wave forces acting on the sea access roads are analyzed by considering different wave conditions and geometries of the structures.In particular,the presence of the girder is analyzed and the differences in the wave forces due to the air cushion effects which are created below the structure are highlighted.展开更多
Pre-modern Chinese crafts,such as iron smelting,cookery,medicine,and the production of vehicles,bows,and arrows indicate the traditional Chinese view of technology as being organic,holistic,and comprehensive.This view...Pre-modern Chinese crafts,such as iron smelting,cookery,medicine,and the production of vehicles,bows,and arrows indicate the traditional Chinese view of technology as being organic,holistic,and comprehensive.This view of technology is guided by the concept of he(和)and employs the means and methods of he,thus achieving the purport of he.In Chinese,the character he(和)possesses positive connotations.It originated from the meaning of"to season;to add flavoring to"(调和)and that of flavors being"perfectly harmonious"(和美).From this sensory experience,he gradually extended to the abstract levels of materiality,humanity,sociality,"order"(wei位),and "power,situation,force"(shi势).Finally,he was elevated to the supreme level of"qi of great harmony"(taihe zhi qi太和之气),which is comparable to the concept of dao(道).The philosophy of he has exerted wide impact on such areas as technology,art,national character,cultural psychology,and behavior patterns,and has become an integral part of China's inherent culture.The paradoxes and deviations of he hold their own profound philosophical implications that merit further exploration.As humanity confronts significant challenges,such as how we can coexist with others,with technology,and with nature,the ancient Eastern wisdom embodied in he continues to possess practical characteristics and value.展开更多
Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale...Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model.展开更多
As a renewable marine inorganic material,Coscinodiscus sp.has significant potential in the field of rapid hemostasis.However,the low yield of Coscinodiscus sp.seriously limits the application.In this study,two new cul...As a renewable marine inorganic material,Coscinodiscus sp.has significant potential in the field of rapid hemostasis.However,the low yield of Coscinodiscus sp.seriously limits the application.In this study,two new culture modes were adopted to increase the production of Coscinodiscus sp.,the effect of changes in culture conditions and growth status on the hemostatic activity of diatoms was detected.To prevent Coscinodiscus sp.from sinking in culture,the suspension culture mode was realized by adding0.5%agar.The semi-continuous high nutrient concentration culture mode increased the cell density of Coscinodiscus sp.to 11000cells mL^(-1)and shorten the culture cycle to 5 d.In terms of coagulation activity,the addition of frustules reduced the in vitro coagulation time by half and the activation time of coagulation by 70%.The hemolysis rate and cytotoxicity of frustules harvested in the two culture modes did not change significantly.The results showed that suspension culture mode and high nutrient concentration culture mode only changed the growth state of Coscinodiscus sp.,while the hemostatic performance remained stable.展开更多
The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework...The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework of a hybrid approach partially relying on the embedded discrete fracture model(EDFM).This model assumes the region outside the stimulated reservoir volume(SRV)as a single-medium while the SRV region itself is described using a double-medium strategy which can account for thefluid exchange between the matrix and the micro-fractures.The shale gas adsorption,desorption,diffusion,gas slippage effect,fracture stress sensitivity,and capillary imbibition have been considered.The shale gas production,pore pressure distribution and water saturation distribution in the reservoir have been simulated.The influences of hydraulic fracture geometry and nonorthogonal hydraulic fractures on gas production have been determined and discussed accordingly.The simulation results show that the daily gas production has an upward and downward trend due to the presence of a large amount of fracturingfluid in the reservoir around the hydraulic fracture.The smaller the angle between the hydraulic fracture and the wellbore,the faster the daily production of shale gas wells decreases,and the lower the cumulative production.Nonplanar fractures can increase the control volume of hydraulic fractures and improve the production of shale gas wells.展开更多
Cellular agriculture is an innovative technology for manufacturing sustainable agricultural products as an alternative to traditional agriculture.While most cellular agriculture is predominantly centered on the produc...Cellular agriculture is an innovative technology for manufacturing sustainable agricultural products as an alternative to traditional agriculture.While most cellular agriculture is predominantly centered on the production of cultured meat,there is a growing demand for an understanding of the production techniques involved in dairy products within cellular agriculture.This review focuses on the current status of cellular agriculture in the dairy sector and technical challenges for cell-cultured milk production.Cellular agriculture technology in the dairy sector has been classified into fermentation-based and animal cell culture-based cellular agriculture.Currently,various companies synthesize milk components through precision fermentation technology.Nevertheless,several startup companies are pursuing animal cell-based technology,driven by public concerns regarding genetically modified organisms in precision fermentation technology.Hence,this review offers an up-to-date exploration of animal cell-based cellular agriculture to produce milk components,specifically emphasizing the structural,functional,and productive aspects of mammary epithelial cells,providing new information for industry and academia.展开更多
Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible...Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible to probe the complexity of 3D cell cultures but are limited by the inherent opaqueness.While tissue optical clearing methods have emerged as powerful tools for investigating whole-mount tissues in 3D,they often have limitations,such as being too harsh for fragile 3D cell cultures,requiring complex handling protocols,or inducing tissue deformation with shrinkage or expansion.To address this issue,we proposed a modified optical clearing method for 3D cell cultures,called MACS-W,which is simple,highly efficient,and morphology-preserving.In our evaluation of MACS-W,we found that it exhibits excellent clearing capability in just 10 min,with minimal deformation,and helps drug evaluation on tumor spheroids.In summary,MACS-W is a fast,minimally-deformative and fluorescence compatible clearing method that has the potential to be widely used in the studies of 3D cell cultures.展开更多
Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the...Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.展开更多
For this editorial,our colleague Dr.Naeema Hasan Al Qasseer,former World Health Organization(WHO)Senior Scientist of Nursing and Midwifery joins me to add her wisdom and experience on the topic of integrative maternal...For this editorial,our colleague Dr.Naeema Hasan Al Qasseer,former World Health Organization(WHO)Senior Scientist of Nursing and Midwifery joins me to add her wisdom and experience on the topic of integrative maternal-child health nursing.展开更多
Introduction: Infectious diseases constitute a major concern of public health in developing countries. Facilities and well trained staff have been shown to be one of the major obstacles in the rapid and quality diagno...Introduction: Infectious diseases constitute a major concern of public health in developing countries. Facilities and well trained staff have been shown to be one of the major obstacles in the rapid and quality diagnosis of these diseases. As such, we carried out an analysis to compare the Widal test and stool culture to identify febrile patients with Salmonella infection. Method: A cross sectional study was conducted to diagnose salmonella infection with out-patients who demonstrated signs of salmonella infection. Serum was harvested from blood collected from 368 (Vina = 234, Mayo Banyo 65, and Djerem = 69) patients accompanied by stool, Widal test was conducted on the spot and stool was taken to a reference laboratory for culture using standard microbiological methods, sociological set up was calculated in percentages, prevalence was calculated using excel while statistical difference was calculated using SPSS. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated to compare the Widal test against stool culture. Results: A total of 368 (50.8% females and 49.2% males) participants took part in the survey. Salmonella prevalence (66.24%) in stool culture in the Vina division was significantly different (p 0.05). The sensitivity,specificity, PPV, and NPV of slide agglutination test against stool culture varied from different areas (Vina: 51.6%, 73.62%, 79.21% and 43.61%;Mayo Banyo: 60.53%, 77.78%, 79.31% and 58.33%;Djerem: 53.18%, 83.73% 73.91% and 67.39%) respectively. Slide agglutination test has a fair agreement with the stool culture (kappa, Vina = 0.202;Mayo Banyo = 0.37 and Djerem = 0.38). Conclusion: Generally, in the three areas of study, the Widal test had a fair correlation with the stool culture;This means the Widal test should not be used alone but in combination with stool culture in the detection of salmonella infections.展开更多
BACKGROUND We investigated the efficacy of intra-articular injection of human umbilical cord mesenchymal stem cells(hUC-MSCs)for the treatment of osteoarthritis(OA)progression in the knee joint.Although many experimen...BACKGROUND We investigated the efficacy of intra-articular injection of human umbilical cord mesenchymal stem cells(hUC-MSCs)for the treatment of osteoarthritis(OA)progression in the knee joint.Although many experimental studies of hUC-MSCs have been published,these studies have mainly used fetal bovine serumcontaining cultures of hUC-MSCs;serum-free cultures generally avoid the shortcomings of serum-containing cultures and are not subject to ethical limitations,have a wide range of prospects for clinical application,and provide a basis or animal experimentation for clinical experiments.AIM To study the therapeutic effects of serum-free hUC-MSCs(N-hUCMSCs)in a mouse model of knee OA.METHODS Fifty-five male C57BL/6 mice were randomly divided into six groups:The blank control group,model control group,serum-containing hUC-MSCs(S-hUCMSC)group,N-hUCMSC group and hyaluronic acid(HA)group.After 9 weeks of modeling,the serum levels of interleukin(IL)-1β and IL-1 were determined.Hematoxylin-eosin staining was used to observe the cartilage tissue,and the Mankin score was determined.Immunohistochemistry and western blotting were used to determine the expression of collagen type II,matrix metalloproteinase(MMP)-1 and MMP-13.RESULTS The Mankin score and serum IL-1 and IL-1β and cartilage tissue MMP-1 and MMP-13 expression were significantly greater in the experimental group than in the blank control group(P<0.05).Collagen II expression in the experimental group was significantly lower than that in the blank control group(P<0.05).The Mankin score and serum IL-1 and IL-1β and cartilage tissue MMP-1 and MMP-13 levels the experimental group were lower than those in the model control group(P<0.05).Collagen II expression in the experimental group was significantly greater than that in the model control group(P<0.05).CONCLUSION N-hUCMSC treatment significantly alleviate the pathological damage caused by OA.The treatment effects of the ShUCMSC group and HA group were similar.展开更多
基金This work was financially supported by the China Postdoctoral Science Foundation(Grant No.2019M652088)the Department of Education of Zhejiang Province Foundation(Grant No.Y201941912)+1 种基金the Key Research and Development Project of Zhejiang Province(Grant No.2020C02052)the College Students Science and Technology Innovation Activity Plan of Zhejiang Province(Grant No.2019R415011).
文摘Chlorella pyrenoidosa,a type of lipid-rich green algae,features broad prospects for application in such fields as healthy foods,biodiesel and so on.The light-utilizing efficiency of the cells is a critical factor that influences the biomass and lipid contents of photoautotrophic microalgae.Inconsistent illumination wavelengths hinder microalgal growth.The patterns about the impacts of mixed light emitting diode(LED)wavelengths or two-phase culture over the growth and lipid accumulation of Chlorella pyrenoidosa were reported.Among the different LED wavelengths(white,purple,blue,green,yellow and red)at the light intensity of 200μmol/m2·s tested,red and green gave maximum biomass and lipid contents,respectively.Based on the discovery,two-phase(red was illuminated for 12 d in the first phase,and then shifted to green light for 8 d in the second phase,R→G)or mixed LED(R:G=3:7 or R:G=7:3)culture protocol was adopted for the high lipid-accumulation of Chlorella pyrenoidosa.The results indicated that the lipid contents of Chlorella pyrenoidosa treated with two-phase(R→G)or mixed LED culture was significantly higher than that of white light with the same intensity(p<0.05),and the highest lipid-accumulation rate was 26.37 mg/L·d in the two-phase culture.Fatty acid(FA)analysis showed that 13 types FAs were detected and unsaturated FAs were over 50%(w/w).26.8%-27.7%(w/w)palmitic acid(C16:0)was the major saturated FA,while the largest proportions of monounsaturated FA and polyunsaturated FA were oleic acid(C18:1)and linoleic acid(C18:2),respectively.Additionally,although no difference in the FA composition of Chlorella pyrenoidosa treated with different protocols was found,the absolute content did differ significantly,coinciding with that of the total lipids.Furthermore,the ratio of unsaturated FAs in Chlorella pyrenoidosa was significantly increased under the mixed LED(R:G=7:3)(p<0.05).
基金Supported by Yunnan S&T Innovation Platform Construction Project(2013DH041)National Natural Science Foundation of China(51366015)Specialized Research Fund for the Doctoral Program of Higher Education of China(20135303110001)~~
文摘Two-phase anaerobic digestion process is influenced by acid control for hydrogen production, reaction temperature, substrate detention time, sludge activity, and granular formation. Al of these technological parameters are directly related to success or failure of the system operation and treatment effect.
基金supported by the National Key Research and Development Program of China(2021YFD2100902-3)the National Natural Science Foundation of China(32072258)+5 种基金Major Science and Technology Program of Heilongjiang(2020ZX08B02)Harbin University of Commerce“Young Innovative Talents”Support Program(2019CX062020CX262020CX27)the Central Financial Support for the Development of Local Colleges and Universities,Graduate Innovation Research Project of Harbin University of Commerce(YJSCX2021-698HSD)Training plan of Young Innovative Talents in Universities of Heilongjiang(UNPYSCT-2020218).
文摘The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.
基金the support of the Opening Fund of State Key Laboratory of Multiphase Flow in Power Engineering(SKLMF-KF-2102)。
文摘Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.
基金partly funded by the Department of Science and Technology Fund for Improvement of S&T Infrastructure (Grant No. SR/FST/LS-I/2018/125)。
文摘Tissue culture techniques were used to produce large amounts of bioactive compounds with medicinal potential, overcoming space and time constraints for cancer prevention. Rice callus suspension cultures(RCSC) and seed extracts prepared from aromatic rice varieties were used to evaluate the cytotoxic impact on human colon and lung cancer cell lines, as well as a normal control cell line, using Taxol as a positive control. RCSC and seed extracts from two Indian aromatic rice varieties were applied at different concentrations to treat the cancer cell lines and normal lung fibroblasts over varying time intervals. Apoptosis was assessed in 1:5 dilutions of the A549 and HT-29 cell lines treated with RCSC for 72 h, using propidium iodide staining and flow cytometry. RCSC showed a more potent cytotoxic effect than seed extracts with minimal effect on the normal cell line, in contrast to Taxol. Confocal microscopy and flow cytometry further confirmed the apoptotic effect of RCSC. Gas chromatography-mass spectrometry-based metabolic profiling identified metabolites involved in cytotoxicity and highlighted altered pathways. RCSC is proposed as an alternative source for the development of novel anticancer drugs with reduced side effects.
基金supported by the National Natural Science Foundation of China Joint Fund Project (Grant/Award Number: U20B6003)National Natural Science Foundation of China (Grant/Award Number: 52304054)。
文摘Understanding fingering, as a challenge to stable displacement during the immiscible flow, has become a crucial phenomenon for geological carbon sequestration, enhanced oil recovery, and groundwater protection. Typically governed by gravity, viscous and capillary forces, these factors lead invasive fluids to occupy pore space irregularly and incompletely. Previous studies have demonstrated capillary numbers,describing the viscous and capillary forces, to quantificationally induce evolution of invasion patterns.While the evolution mechanisms of invasive patterns have not been deeply elucidated under the constant capillary number and three variable parameters including velocity, viscosity, and interfacial tension.Our research employs two horizontal visualization systems and a two-phase laminar flow simulation to investigate the tendency of invasive pattern transition by various parameters at the pore scale. We showed that increasing invasive viscosity or reducing interfacial tension in a homogeneous pore space significantly enhanced sweep efficiency, under constant capillary number. Additionally, in the fingering crossover pattern, the region near the inlet was prone to capillary fingering with multi-directional invasion, while the viscous fingering with unidirectional invasion was more susceptible occurred in the region near the outlet. Furthermore, increasing invasive viscosity or decreasing invasive velocity and interfacial tension promoted the extension of viscous fingering from the outlet to the inlet, presenting that the subsequent invasive fluid flows toward the outlet. In the case of invasive trunk along a unidirectional path, the invasive flow increased exponentially closer to the outlet, resulting in a significant decrease in the width of the invasive interface. Our work holds promising applications for optimizing invasive patterns in heterogeneous porous media.
文摘Background: Over the past 20 years, cultured meat has drawn a lot of public attention as a potential solution to issues with animal husbandry, including inadequate use of natural sources, improper animal welfare practices, and possible risks to public health and safety. The novel method of producing meat through culture reduces the need for animals to produce muscle fiber, thereby obviating the necessity for animal slaughter. Apart from its ethical advantages, cultured meat presents a possible way to fulfill the expanding need for food among growing populations. The purpose of this research was to find out whether Turkish students would be willing to pay for and accept cultured meat. Technique: Method: 371 university students who willingly consented to fill out a questionnaire and provide demographic data make up the research sample. Questions from previous studies on the acceptability of cultured meat were compiled to create the survey. The research’s data collection took place in March and April of 2022. The research was completed in June 2022 after the data had been processed and analyzed. Results: The results showed that the majority of participants were female and had omnivorous eating habits. Based on the results of the Bonferroni correction test, students with a higher intention to purchase and consume cultured meat were those who received economics and business education. Students with two years of university education had a higher overall survey score than those with four years of education (p < 0.05). Furthermore, it is discovered that there is a negative correlation between the participants’ ages and their Factor 2 (using cultured meat as an alternative to industrial meat) and Factor 3 (consuming and purchasing it) section points (r = -109, p = 0.036) (r = -0.121, p = 0.019). In conclusion, university students generally have a negative outlook on health-related issues, such as eating cultured meat as an alternative.
基金This work is supported by the National Natural Science Foundation of China(No.52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023262)Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC004).
文摘Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.
基金supported by the New Cornerstone Science Foundation through the XPLORER PRIZE and the National Natural Science Foundation of China(Grant No.52088102).
文摘A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analyses presented by Chen et al.(2022),in which the sea access roads are semi-immersed.In this new configuration,the sea access roads are placed above the still water level,therefore the presence of the air phase becomes a relevant issue in the determination of the wave forces acting on the structures.Indeed,the comparison of wave forces on the open-type sea access roads obtained from the single and two-phase SPH models with the experimental results shows that the latter are in much better agreement.So in the numerical simulations,a two-phaseδ-SPH model is adopted to investigate the dynamical problems.Based on the numerical results,the maximum horizontal and uplifting wave forces acting on the sea access roads are analyzed by considering different wave conditions and geometries of the structures.In particular,the presence of the girder is analyzed and the differences in the wave forces due to the air cushion effects which are created below the structure are highlighted.
基金the support of the Center for Cultural Studies on Science and Technology in China at Technische Universitat Berlin。
文摘Pre-modern Chinese crafts,such as iron smelting,cookery,medicine,and the production of vehicles,bows,and arrows indicate the traditional Chinese view of technology as being organic,holistic,and comprehensive.This view of technology is guided by the concept of he(和)and employs the means and methods of he,thus achieving the purport of he.In Chinese,the character he(和)possesses positive connotations.It originated from the meaning of"to season;to add flavoring to"(调和)and that of flavors being"perfectly harmonious"(和美).From this sensory experience,he gradually extended to the abstract levels of materiality,humanity,sociality,"order"(wei位),and "power,situation,force"(shi势).Finally,he was elevated to the supreme level of"qi of great harmony"(taihe zhi qi太和之气),which is comparable to the concept of dao(道).The philosophy of he has exerted wide impact on such areas as technology,art,national character,cultural psychology,and behavior patterns,and has become an integral part of China's inherent culture.The paradoxes and deviations of he hold their own profound philosophical implications that merit further exploration.As humanity confronts significant challenges,such as how we can coexist with others,with technology,and with nature,the ancient Eastern wisdom embodied in he continues to possess practical characteristics and value.
基金Supported by the National Natural Science Foundation of China(52374043)Key Program of the National Natural Science Foundation of China(52234003).
文摘Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model.
基金supported by the National Natural Science Foundation of China (No.U22A20588)the Sanya Science and Technology Project (No.2022KJCX57)+1 种基金the Qingdao National Laboratory for Marine Science and Technology (No.12-04)the Project supported by the Education Department of Hainan Province (No.Hnjg2024276)。
文摘As a renewable marine inorganic material,Coscinodiscus sp.has significant potential in the field of rapid hemostasis.However,the low yield of Coscinodiscus sp.seriously limits the application.In this study,two new culture modes were adopted to increase the production of Coscinodiscus sp.,the effect of changes in culture conditions and growth status on the hemostatic activity of diatoms was detected.To prevent Coscinodiscus sp.from sinking in culture,the suspension culture mode was realized by adding0.5%agar.The semi-continuous high nutrient concentration culture mode increased the cell density of Coscinodiscus sp.to 11000cells mL^(-1)and shorten the culture cycle to 5 d.In terms of coagulation activity,the addition of frustules reduced the in vitro coagulation time by half and the activation time of coagulation by 70%.The hemolysis rate and cytotoxicity of frustules harvested in the two culture modes did not change significantly.The results showed that suspension culture mode and high nutrient concentration culture mode only changed the growth state of Coscinodiscus sp.,while the hemostatic performance remained stable.
基金supported by the National Natural Science Foundation of China(Grant Nos.U19A2043 and 52174033)Natural Science Foundation of Sichuan Province(NSFSC)(No.2022NSFSC0971)the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance.
文摘The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework of a hybrid approach partially relying on the embedded discrete fracture model(EDFM).This model assumes the region outside the stimulated reservoir volume(SRV)as a single-medium while the SRV region itself is described using a double-medium strategy which can account for thefluid exchange between the matrix and the micro-fractures.The shale gas adsorption,desorption,diffusion,gas slippage effect,fracture stress sensitivity,and capillary imbibition have been considered.The shale gas production,pore pressure distribution and water saturation distribution in the reservoir have been simulated.The influences of hydraulic fracture geometry and nonorthogonal hydraulic fractures on gas production have been determined and discussed accordingly.The simulation results show that the daily gas production has an upward and downward trend due to the presence of a large amount of fracturingfluid in the reservoir around the hydraulic fracture.The smaller the angle between the hydraulic fracture and the wellbore,the faster the daily production of shale gas wells decreases,and the lower the cumulative production.Nonplanar fractures can increase the control volume of hydraulic fractures and improve the production of shale gas wells.
基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2022R1A2C1008327)。
文摘Cellular agriculture is an innovative technology for manufacturing sustainable agricultural products as an alternative to traditional agriculture.While most cellular agriculture is predominantly centered on the production of cultured meat,there is a growing demand for an understanding of the production techniques involved in dairy products within cellular agriculture.This review focuses on the current status of cellular agriculture in the dairy sector and technical challenges for cell-cultured milk production.Cellular agriculture technology in the dairy sector has been classified into fermentation-based and animal cell culture-based cellular agriculture.Currently,various companies synthesize milk components through precision fermentation technology.Nevertheless,several startup companies are pursuing animal cell-based technology,driven by public concerns regarding genetically modified organisms in precision fermentation technology.Hence,this review offers an up-to-date exploration of animal cell-based cellular agriculture to produce milk components,specifically emphasizing the structural,functional,and productive aspects of mammary epithelial cells,providing new information for industry and academia.
基金support from the National Key Research and Development Program of China(Grant No.2017YFA0700501),and the Innovation Fund of WNLO.
文摘Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible to probe the complexity of 3D cell cultures but are limited by the inherent opaqueness.While tissue optical clearing methods have emerged as powerful tools for investigating whole-mount tissues in 3D,they often have limitations,such as being too harsh for fragile 3D cell cultures,requiring complex handling protocols,or inducing tissue deformation with shrinkage or expansion.To address this issue,we proposed a modified optical clearing method for 3D cell cultures,called MACS-W,which is simple,highly efficient,and morphology-preserving.In our evaluation of MACS-W,we found that it exhibits excellent clearing capability in just 10 min,with minimal deformation,and helps drug evaluation on tumor spheroids.In summary,MACS-W is a fast,minimally-deformative and fluorescence compatible clearing method that has the potential to be widely used in the studies of 3D cell cultures.
基金supported by the NSFC Grant no.12271492the Natural Science Foundation of Henan Province of China Grant no.222300420550+1 种基金supported by the NSFC Grant no.12271498the National Key R&D Program of China Grant no.2022YFA1005202/2022YFA1005200.
文摘Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.
文摘For this editorial,our colleague Dr.Naeema Hasan Al Qasseer,former World Health Organization(WHO)Senior Scientist of Nursing and Midwifery joins me to add her wisdom and experience on the topic of integrative maternal-child health nursing.
文摘Introduction: Infectious diseases constitute a major concern of public health in developing countries. Facilities and well trained staff have been shown to be one of the major obstacles in the rapid and quality diagnosis of these diseases. As such, we carried out an analysis to compare the Widal test and stool culture to identify febrile patients with Salmonella infection. Method: A cross sectional study was conducted to diagnose salmonella infection with out-patients who demonstrated signs of salmonella infection. Serum was harvested from blood collected from 368 (Vina = 234, Mayo Banyo 65, and Djerem = 69) patients accompanied by stool, Widal test was conducted on the spot and stool was taken to a reference laboratory for culture using standard microbiological methods, sociological set up was calculated in percentages, prevalence was calculated using excel while statistical difference was calculated using SPSS. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated to compare the Widal test against stool culture. Results: A total of 368 (50.8% females and 49.2% males) participants took part in the survey. Salmonella prevalence (66.24%) in stool culture in the Vina division was significantly different (p 0.05). The sensitivity,specificity, PPV, and NPV of slide agglutination test against stool culture varied from different areas (Vina: 51.6%, 73.62%, 79.21% and 43.61%;Mayo Banyo: 60.53%, 77.78%, 79.31% and 58.33%;Djerem: 53.18%, 83.73% 73.91% and 67.39%) respectively. Slide agglutination test has a fair agreement with the stool culture (kappa, Vina = 0.202;Mayo Banyo = 0.37 and Djerem = 0.38). Conclusion: Generally, in the three areas of study, the Widal test had a fair correlation with the stool culture;This means the Widal test should not be used alone but in combination with stool culture in the detection of salmonella infections.
基金Supported by the Cultivated by Outstanding Young Scientific and Technological Innovation and Entrepreneurship Talents in Nanning City,China,No.RC20210107and Self-Funded Research Project by Guangxi Health Commission,China,No.Z20191090.
文摘BACKGROUND We investigated the efficacy of intra-articular injection of human umbilical cord mesenchymal stem cells(hUC-MSCs)for the treatment of osteoarthritis(OA)progression in the knee joint.Although many experimental studies of hUC-MSCs have been published,these studies have mainly used fetal bovine serumcontaining cultures of hUC-MSCs;serum-free cultures generally avoid the shortcomings of serum-containing cultures and are not subject to ethical limitations,have a wide range of prospects for clinical application,and provide a basis or animal experimentation for clinical experiments.AIM To study the therapeutic effects of serum-free hUC-MSCs(N-hUCMSCs)in a mouse model of knee OA.METHODS Fifty-five male C57BL/6 mice were randomly divided into six groups:The blank control group,model control group,serum-containing hUC-MSCs(S-hUCMSC)group,N-hUCMSC group and hyaluronic acid(HA)group.After 9 weeks of modeling,the serum levels of interleukin(IL)-1β and IL-1 were determined.Hematoxylin-eosin staining was used to observe the cartilage tissue,and the Mankin score was determined.Immunohistochemistry and western blotting were used to determine the expression of collagen type II,matrix metalloproteinase(MMP)-1 and MMP-13.RESULTS The Mankin score and serum IL-1 and IL-1β and cartilage tissue MMP-1 and MMP-13 expression were significantly greater in the experimental group than in the blank control group(P<0.05).Collagen II expression in the experimental group was significantly lower than that in the blank control group(P<0.05).The Mankin score and serum IL-1 and IL-1β and cartilage tissue MMP-1 and MMP-13 levels the experimental group were lower than those in the model control group(P<0.05).Collagen II expression in the experimental group was significantly greater than that in the model control group(P<0.05).CONCLUSION N-hUCMSC treatment significantly alleviate the pathological damage caused by OA.The treatment effects of the ShUCMSC group and HA group were similar.